
Chapter 3

Learning in Two-Player Matrix Games

3.1 Matrix Games

In this chapter, we will examine the two-player stage game or the matrix game
problem. Now, we have two players each learning how to play the game. In
some cases they may be competing with each other, or they may be cooper-
ating with other. In this section, we will introduce the class of game that we
will investigate in this chapter. In fact, almost every child has played some ver-
sion of these games. We will focus on three different games: matching pennies,
rock-paper-scissors, and prisoners’ dilemma. These are all calledmatrix games
or stage games because there is no state transition involved. We will limit how
far we delve into game theory and focus on the learning algorithms associated
with these games. The idea is for the agents to play these games repetitively and
learn their best strategy. In some cases one gets a pure strategy; in other words
the agent will choose the same particular action all the time, and in some cases
it is best to pick an action with a particular probability, which is known as a
mixed strategy.

In the prisoners’ dilemma game, two prisoners who committed a crime
together are being interrogated by the police. Each prisoner has two choices;
one choice is to cooperate with the police and defect on his accomplice, and
the other is to cooperate with his accomplice and lie to the police. If both
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Table 3.1 Examples of two-player matrix games.
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of them cooperate with each other and do not confess to the crime, then
they will get just a few months in jail. If they both defect and cooperate with
the police, then they will get a longer time in jail. However, if one of them
defects and cooperates with the police and the other one cooperates with
his accomplice and lies to the police, then the one who lied to the police and
tried to cooperate with the accomplice will go to jail for a very long time. In
Table 3.1, the payoff matrix for the game is shown. This matrix stipulates the
rewards for player 1. In the matrix, the entries represent the rewards to the row
player, and the first row represents cooperation with the accomplice and the
second row represents defection and confession to the police. If the prisoners
cooperate with each other and both of them pick the first row and column,
then they only go to jail for a short time, a few months, and they get a good
reward of 5. However, if row player defects and tells the truth to the police and
the column player lies to the police and cooperates with his accomplice, the
row player gets a big reward of 10 and goes free, whereas the column player
would get a reward of 0 and be sent to jail for life. If they both defect and tell
the truth to the police, then they each get a small reward of 1 and go to jail for
a couple of years. If this was you, would you trust your criminal accomplice to
cooperate with you because if he defects to the police and you lie to the police
then you will go to jail for a very long time? Most rational people will confess
to the police and limit the time that they may spend in jail. The choice of
action to defect is known as the Nash equilibrium (NE). If a machine learning
agent were to play this game repetitively, it should learn to play the action of
Defect all the time, with 100% probability. This is known as a pure strategy
game. A pure strategy means that one picks the same action all the time.

The next game we will define is the matching pennies game. In this game two
children each hold a penny. They then independently choose to show either
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heads or tails. If they show two tails or two heads, then player 1 will win a
reward of 1 and player 2 loses and gets a reward of −1. If they both show
different sides of the coin, then player 2 wins. On any given play, one will win
and one will lose. This is known as a zero-sum matrix game. When we say
that it is a zero-sum game, we mean that one wins the same amount as the
other loses. This game’s optimal solution, or its NE, is the mixed strategy of
choosing heads 50% of the time and choosing tails also 50% of the time. If
player 2 always played heads, then quickly player 1 would realize that player
2 always plays heads and player 1 would also start to always play heads and
would begin to win all the time. If player 2 always played heads, then we would
say that player 2 was an irrational player. So clearly, each one of them should
play either heads or tails 50% of the time to maximize their reward. This is
known as a mixed strategy game; whereas in the prisoner’s dilemma game the
optimal strategy was always to defect 100% of the time and as such we refer to
that as a pure strategy.

The next game of interest to us is the game of rock-paper-scissors. This game
is well known to most children. The idea is to display your hand as either a
rock (clenched fist), scissors, or as a flat piece of paper. Then, paper covers
(beats) rock, rock breaks (beats) scissors, and scissors cuts (beats) paper. If both
players display the same entity, then it is a tie. This game is a mixed strategy
zero-sum game. The obvious solution is to randomly play each action, rock,
paper, or scissors with a 33.3% probability. The only difference to this game is
that we now have three actions instead of two.

More formally, a matrix game (strategic game) [1, 2] can be described as a
tuple (n,A1,… ,n,R1,… ,n), where n is the agents’ number,Ai is the discrete space
of agent i’s available actions, and Ri is the payoff function that agent i receives.
In matrix games, the objective of agents is to find pure or mixed strategies that
maximize their payoffs. A pure strategy is the strategy that chooses actions
deterministically, whereas a mixed strategy is the strategy that chooses actions
based on a probability distribution over the agent’s available actions. The NE
in the rock-paper-scissors game and the matching pennies game are mixed
strategies that execute actions with equal probability [3].

The player i’s reward functionRi is determined by all players’ joint action from
joint action space A1 × · · · × An. In a matrix game, each player tries to max-
imize its own reward based on the player’s strategy. A player’s strategy in a
matrix game is a probability distribution over the player’s action set. To eval-
uate a player’s strategy, we introduce the following concept of NE:
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Definition 3.1 A Nash equilibrium in a matrix game is a collection of all play-
ers’ strategies (𝜋∗

1 , … , 𝜋∗
n ) such that

Vi(𝜋∗
1 , … , 𝜋∗

i , … , 𝜋∗
n ) ≥ Vi(𝜋∗

1 , … , 𝜋i, … , 𝜋∗
n ), (3.1)

∀𝜋i ∈ Πi, i = 1, … , n (3.2)

where Vi(⋅) is player i’s value function which is player i’s expected reward given
all players’ strategies, and 𝜋i is any strategy of player i from the strategy space
Πi.

In other words, an NE is a collection of strategies for all players such that no
player can do better by changing its own strategy given that other players con-
tinue playing their NE strategies [4]. We define Qi(a1, … , an) as the received
reward of player i given players’ joint action a1, … , an, and 𝜋i(ai) (i = 1, … , n)
as the probability of player i choosing action ai. Then the NE defined in (3.1)
becomes ∑

a1,… ,an∈A1×···×An

Qi(a1, … , an)𝜋∗
1 (a1) · · ·𝜋

∗
i (ai) · · ·𝜋

∗
n (an) ≥∑

a1,… ,an∈A1×···×An

Qi(a1, … , an)𝜋∗
1 (a1) · · ·𝜋i(ai) · · ·𝜋

∗
n (an),

∀𝜋i ∈ Πi, i = 1, · · · , n (3.3)

where 𝜋∗
i (ai) is the probability of player i choosing action ai under the player

i’s NE strategy 𝜋∗
i .

We provide the following definitions regarding matrix games:

Definition 3.2 A Nash equilibrium is called a strict Nash equilibrium if (3.1)
is strict [5].

Definition 3.3 If the probability of any action from the action set is greater than
0, then the player’s strategy is called a fully mixed strategy.

Definition 3.4 If the player selects one action with probability 1 and other
actions with probability 0, then the player’s strategy is called a pure strategy.

Definition 3.5 A Nash equilibrium is called a strict Nash equilibrium in pure
strategies if each player’s equilibrium action is better than all its other actions,
given the other players’ actions [6].
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3.2 Nash Equilibria in Two-Player Matrix Games

For a two-player matrix game, we can set up a matrix with each element con-
taining a reward for each joint action pair. Then the reward function Ri for
player i(i = 1, 2) becomes a matrix.

A two-player matrix game is called a zero-sum game if the two players are fully
competitive. In this way, we have R1 = −R2. A zero-sum game has a unique
NE in the sense of the expected reward. This means that, although each player
may have multiple NE strategies in a zero-sum game, the value of the expected
reward Vi under these NE strategies will be the same. A general-sum matrix
game refers to all types of matrix games. In a general-sum matrix game, the
NE is no longer unique and the game might have multiple NEs.

For a two-player matrix game, we define 𝜋i = (𝜋i(a1), … , 𝜋i(ami
)) as the set

of all probability distributions over player i’s action set Ai(i = 1, 2). Then Vi
becomes

Vi = 𝜋1Ri𝜋
T
2 (3.4)

AnNE for a two-playermatrix game is the strategy pair (𝜋∗
1 , 𝜋

∗
2 ) for two players

such that, for i = 1, 2,

Vi(𝜋∗
i , 𝜋

∗
−i) ≥ Vi(𝜋i, 𝜋∗

−i),∀𝜋i ∈ PD(Ai) (3.5)

where −i denotes any other player than player i, and PD(Ai) is the set of all
probability distributions over player i’s action set Ai.

Given that each player has two actions in the game, we can define a two-player
two-action general-sum game as

R1 =
[
r11 r12
r21 r22

]
, R2 =

[
c11 c12
c21 c22

]
(3.6)

where rlf and clf denote the reward to the row player (player 1) and the reward
to the column player (player 2), respectively. The row player chooses action l ∈
{1, 2} and the columnplayer chooses action f ∈ {1, 2}. Based onDefinition 3.2
and (3.5), the pure strategies l and f are called a strict NE in pure strategies if

rlf > r−lf , clf > cl−f for l, f ∈ {1, 2} (3.7)

where −l and −f denote any row other than row l and any column other than
column f , respectively.
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3.3 Linear Programming in Two-Player Zero-Sum Matrix Games

One of the issues that arise in some of the machine learning algorithms is to
solve for the NE. This is easier said than done. In this section, we will demon-
strate how to compute the NE in competitive zero-sum games. In some of the
algorithms to follow, a step in the algorithm will be to solve for the NE using
linear programming or quadratic programming. To do this, we will be required
to set up a constrainedminimization/maximization problem that will be solved
with the simplex method. The simplex method is well known in the linear pro-
gramming community.

Finding the NE in a two-player zero-sum matrix game is equal to finding the
minimax solution for the following equation [7]:

max
𝜋i∈PD(Ai)

min
a−i∈A−i

∑
ai∈Ai

Ri𝜋i(ai) (3.8)

where 𝜋i(ai) denotes the probability distribution over player i’s action ai, and
a−i denotes any action from another player other than player i. According
to (3.8), each player tries to maximize the reward in the worst case scenario
against its opponent. To find the solution for (3.8), one can use linear pro-
gramming.

Assume we have a 2 × 2 zero-sum matrix game given as

R1 =
[
r11 r12
r21 r22

]
, R2 = −R1 (3.9)

where R1 is player 1’s reward matrix and R2 is player 2’s reward matrix. We
define pj (j = 1, 2) as the probability distribution over player 1’s jth action and
qj as the probability distribution over player 2’s jth action.

Then the linear program for player 1 is

Find (p1, p2) to maximize V1

subject to

r11p1 + r21p2 ≥ V1 (3.10)

r12p1 + r22p2 ≥ V1 (3.11)

p1 + p2 = 1 (3.12)

pj ≥ 0, j = 1, 2 (3.13)
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The linear program for player 2 is

Find (q1, q2) to maximizeV2

subject to

−r11q1 − r12q2 ≥ V2 (3.14)

−r21q1 − r22q2 ≥ V2 (3.15)

q1 + q2 = 1 (3.16)

qj ≥ 0, j = 1, 2 (3.17)

To solve the above linear programming problem, one can use the simplex
method to find the optimal points geometrically. We provide three 2 × 2
zero-sum games below.

Example 3.1 We take the matching pennies game, for example. The reward
matrix for player 1 is

R1 =
[

1 −1
−1 1

]
(3.18)

Since p2 = 1 − p1, the linear program for player 1 becomes

Player 1: find p1 to maximizeV1

subject to

2p1 − 1 ≥ V1 (3.19)

−2p1 + 1 ≥ V1 (3.20)

0 ≤ p1 ≤ 1 (3.21)

We use the simplexmethod to find the solution geometrically. Figure 3-1 shows
the plot of p1 overV1 where the gray area satisfies the constraints (3.19)–(3.21).
From the plot, the maximum value of V1 within the gray area is 0 when p1 =
0.5. Therefore, p1 = 0.5 is the Nash equilibrium strategy for player 1. Similarly,
we can use the simplexmethod to find the Nash equilibrium strategy for player
2. After solving (3.14)–(3.17), we can find that the maximum value of V2 is 0
when q1 = 0.5. Then this game has a Nash equilibrium (p1 = 0.5, q1 = 0.5),
which is a fully mixed strategy Nash equilibrium.
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Fig. 3-1. Simplex method for player 1 in the matching pennies game. Reproduced from [8],

© X. Lu.

Example 3.2 We change the reward r12 from −1 in (3.18) to 2 and call this
game as the revised version of the matching pennies game. The reward matrix
for player 1 becomes

R1 =
[

1 2
−1 1

]
(3.22)

The linear program for player 1 is

Player 1: find p1 to maximizeV1

subject to

2p1 − 1 ≥ V1 (3.23)

p1 + 1 ≥ V1 (3.24)

0 ≤ p1 ≤ 1 (3.25)

From the plot in Fig. 3-2, we can find that the maximum value of V1 in the
gray area is 1 when p1 = 1. Similarly, we can find the maximum value of
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Fig. 3-2. Simplex method for player 1 in the revised matching pennies game. Reproduced

from [8], © X. Lu.

V2 = −1 when q1 = 1. Therefore, this game has a Nash equilibrium (p1 = 1,
q1 = 1), which is a pure strategy Nash equilibrium.

Example 3.3 We now consider the following zero-sum matrix game:

R1 =
[
r11 2
3 −1

]
, R2 = −R1 (3.26)

where r11 ∈ ℜ. Based on different values of r11, we want to find the Nash equi-
librium strategies (p1, q1). The linear program for each player becomes

Player 1: Find p1 to maximizeV1

subject to

(r11 − 3)p1 + 3 ≥ V1 (3.27)

3p1 − 1 ≥ V1 (3.28)

0 ≤ p1 ≤ 1 (3.29)
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Player 2: Find q1 to maximize V2

subject to

(2 − r11)q1 − 2 ≥ V2 (3.30)

−4q1 + 1 ≥ V2 (3.31)

0 ≤ q1 ≤ 1 (3.32)

We use the simplex method to find the Nash equilibria for the players with a
varying r11. When r11 > 2, we find that the Nash equilibrium is in pure strate-
gies (p∗1 = 1, q∗1 = 0). When r11 < 2, we find that the Nash equilibrium is in
fully mixed strategies (p∗1 = 4∕(6 − r11), q∗1 = 3∕(6 − r11)). For r11 = 2, we plot
the players’ strategies over their value functions in Fig. 3-3. From the plot we
find that player 1’s Nash equilibrium strategy is p1 = 1, and player 2’s Nash
equilibrium strategy is q1 ∈ [0, 0.75], which is a set of strategies. Therefore, at
r11 = 2, we have multiple Nash equilibria which are p1 = 1, q1 ∈ [0, 0.75]. We
also plot the Nash equilibria (p1, q1) over r11 in Fig. 3-4.

3.4 The Learning Algorithms

In this section, we will present several algorithms that have gained popularity
within the field of machine learning. We will focus on the algorithms that have
been used for learning how to choose the optimal actions when agents are play-
ing matrix games. Once again, these algorithms will look like gradient descent
(ascent) algorithms. We will discuss their strengths and weaknesses. In partic-
ular, we are going to look at the gradient ascent (GA) algorithm and its related
version the infinitesimal gradient ascent (IGA) algorithm and the policy hill
climbing (PHC) algorithm and the variable learning rate version called the
win or learn fast-policy hill climbing (WoLF-PHC) algorithm [3]. We will then
examine the linear reward-inaction (LRI ) and the lagging anchor algorithm.
Finally, we will discuss the advantages of the LRI lagging anchor algorithm.
There are a number of versions of these algorithms in the literature, but they
tend to be minor variations of the ones being discussed here. Of course, one
could argue that all learning algorithms are minor variations of the stochastic
approximation technique.

3.5 Gradient Ascent Algorithm

One of the fundamental algorithms associated with learning in matrix games
is the GA algorithm and its related formulation called the IGA algorithm.
This algorithm is used in relatively simple two-action/two-player general-sum
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Fig. 3-3. Simplex method at r11 = 2 in Example 3.3. (a) Simplex method for player 1 at r11 = 2.

(b) Simplex method for player 2 at r11 = 2. Reproduced from [8], © X. Lu.
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Fig. 3-4. Players’ NE strategies versus r11. Reproduced from [8], © X. Lu.

games. Theoretically, this algorithm will fail to converge. It can be shown that
by introducing a variable learning rate that tends to zero as limt→∞𝜂 → 0, the
GA algorithm will converge.

We will examine the GA algorithm presented by Singh et al. [9]. We examine
the case of a 2 × 2 matrix game as two payoff matrices, one for the row player
and one for the column player. The matrices are

Rr =
[
r11 r12
r21 r22

]
(3.33)

and

Rc =
[
c11 c12
c21 c22

]
(3.34)

Then, if the row player chooses action 1 and the column player chooses action
2, then the reward to player 1 (the row player) is r12 and the reward to player
2 (the column player) is c12. This is a two-action two-player game and we are
assuming the existence of amixed strategy, although the algorithm can be used
for pure strategy games as well. In a mixed strategy game, the probability that
the row player chooses action 1 isP{ar = 1} = 𝛼 and, therefore, the probability
that the row player chooses action 2 must be given by P{ar = 2} = 1 − 𝛼. Sim-
ilarly, for player 2 (the column player), the probability that player 2 chooses
action 1 is given by P{ac = 1} = 𝛽 and, therefore, the probability of choosing
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action 2 is P{ac = 1} = 1 − 𝛽. The strategy of the matrix game is completely
defined by the joint strategy 𝜋(𝛼, 𝛽), where 𝛼 and 𝛽 are constrained to remain
within the unit square. We define the expected payoff to each player asVr(𝛼, 𝛽)
and Vc(𝛼, 𝛽). We can write the expected payoffs as

Vr(𝛼, 𝛽) = 𝛼𝛽r11 + 𝛼(1 − 𝛽)r12 + (1 − 𝛼)𝛽r21 (3.35)

+(1 − 𝛼)(1 − 𝛽)r22 (3.36)

= ur𝛼𝛽 + 𝛼(r12 − r22) + 𝛽(r21 − r22) + r22 (3.37)

Vc(𝛼, 𝛽) = 𝛼𝛽c11 + 𝛼(1 − 𝛽)c12 + (1 − 𝛼)𝛽c21 (3.38)

+(1 − 𝛼)(1 − 𝛽)c22 (3.39)

= uc𝛼𝛽 + 𝛼(c12 − c22) + 𝛽(c21 − c22) + c22 (3.40)

where

ur = r11 − r12 − r21 + r22 (3.41)

uc = c11 − c12 − c21 + c22 (3.42)

We can now compute the gradient of the payoff function with respect to the
strategy as

𝜕Vr(𝛼, 𝛽)
𝜕𝛼

= 𝛽ur + (r12 − r22) (3.43)

𝜕Vc(𝛼, 𝛽)
𝜕𝛽

= 𝛼uc + (c21 − c22) (3.44)

The GA algorithm then becomes

𝛼k+1 = 𝛼k + 𝜂
𝜕Vr(𝛼k, 𝛽k)

𝜕𝛼k
(3.45)

𝛽k+1 = 𝛽k + 𝜂
𝜕Vc(𝛼k, 𝛽k)

𝜕𝛽k
(3.46)

Theorem 3.1 If both players follow infinitesmal gradient ascent (IGA), where
𝜂 → 0, then their strategies will converge to a Nash equilibrium, or the average
payoffs over time will converge in the limit to the expected payoffs of a Nash
equilibrium.

The first algorithm we will try is the GA algorithm. We will play the mixed
strategy games of matching pennies. To implement the GA learning algorithm
for the matching pennies game, one needs to know the payoff matrix in
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Fig. 3-5. GA in matching pennies game.

advance. One can see from Fig. 3-5 that the strategy oscillates between 0 and
1. If we try to implement the IGA algorithm, one runs into the difficulty of
trying to choose an appropriate rate of convergence of the step size to zero.
This is not a practical algorithm to use. Therefore, the GA algorithm does not
work particularly well; it oscillates and one can show this theoretically [3].

3.6 WoLF-IGA Algorithm

The WoLF-IGA algorithm was introduced by Bowling and Veloso [3] for
two-player two-action matrix games. As a GA learning algorithm, the
WoLF-IGA algorithm allows the player to update its strategy based on the
current gradient and a variable learning rate. The value of the learning rate is
smaller when the player is winning, and it is larger when the player is losing.
The term p1 is the probability of player 1 choosing the first action. Then,
1 − p1 is the probability of player 1 choosing the second action. Accordingly,
q1 is the probability of player 2 choosing the first action and 1 − q1 is the
probability of player 2 choosing the second action. The updating rules of the
WoLF-IGA algorithm are as follows:

p1(k + 1) = p1(k) + 𝜂𝛼1(k)
𝜕V1(p1(k), q1(k))

𝜕p1
(3.47)

q1(k + 1) = q1(k) + 𝜂𝛼2(k)
𝜕V2(p1(k), q1(k))

𝜕q1
(3.48)

𝛼1(k) =

{
𝛼min, ifV1(p1(k), q1(k)) > V1(p∗1, q1(k))
𝛼max, otherwise
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𝛼2(k) =

{
𝛼min, ifV2(p1(k), q1(k)) > V2(p1(k), q∗1)
𝛼max, otherwise

where 𝜂 is the step size, 𝛼i(i = 1, 2) is the learning rate for player i(i = 1, 2),
Vi(p1(k), q1(k)) is the expected reward of player i at time k given the current
two players’ strategy pair (p1(k), q1(k)), and (p∗1, q

∗
1) are equilibrium strategies

for the players. In a two-player two-action matrix game, if each player uses the
WoLF-IGA algorithm with 𝛼max > 𝛼min, the players’ strategies converge to an
NE as the step size 𝜂 → 0 [3].

This algorithm is a GA learning algorithm that can guarantee the conver-
gence to an NE in fully mixed or pure strategies for two-player two-action
general-sum matrix games. However, this algorithm is not a decentralized
learning algorithm. It requires the knowledge ofV1(p∗1, q1(k)) andV2(p1(k), q∗1)
in order to choose the learning parameters 𝛼min and 𝛼max accordingly. In
order to obtain V1(p∗1, q1(k)) and V2(p1(k), q∗1), we need to know each player’s
reward matrix and its opponent’s strategy at time k; whereas in a decentralized
learning algorithm, the agents would only have their own actions and reward
at time k. Although a practical decentralized learning algorithm called
a WoLF-PHC method was provided in Reference 3, there is no proof of
convergence to NE strategies.

3.7 Policy Hill Climbing (PHC)

A more practical version of the gradient descent algorithm is the PHC algo-
rithm. This algorithm is based on the Q-learning algorithm that we presented
in Chapter 2. This is a rational algorithm that can estimate mixed strategies.
The algorithmwill converge to the optimalmixed strategies if the other players
are not learning and are therefore playing stationary strategies.

The PHC algorithm is a simple practical algorithm that can learnmixed strate-
gies.Hill climbing is performed by the PHCalgorithm in the space of themixed
strategies. This algorithm was first proposed by Bowling and Veloso [3]. The
PHC does not require much information as neither the recent actions executed
by the agent nor the current strategy of its opponent is required to be known.
The probability that the agent selects the highest valued actions is increased by
a small learning rate 𝛿 ∈ (0,1]. The algorithm is equivalent to the single-agent
Q-learning when 𝛿 = 1 as the policy moves to the greedy policy with proba-
bility 1. The PHC algorithm is rational and converges to the optimal solution
when a fixed (stationary) strategy is followed by the other players. However, the
PHC algorithmmay not converge to a stationary policy if the other players are
learning [3].
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The convergence proof is the same as for Q-learning [10], which guarantees
that the Q values will converge to the optimal Q∗ with a suitable exploration
policy [9]. However, when both players are learning, then the algorithm will
not necessarily converge. The algorithm starts from the Q-learning algorithm
and is given as

Qj
t+1(a) = (1 − 𝛼)Qj

t (a) + 𝛼(rj + 𝛾 max
a′

Qj
t (a

′)) (3.49)

𝜋
j
t+1(a) = 𝜋

j
t (a) + Δa (3.50)

where

Δa =
⎧⎪⎨⎪⎩
−𝛿a if a ≠ argmaxa′Q

j
t (a′)∑

a′≠a

𝛿a′ otherwise

where 𝛿a = min
(
𝜋
j
t (a),

𝛿|Aj|−1
)

The algorithm is given as,

Algorithm 3.1 Policy hill-climbing (PHC) algorithm for agent j:

Initialize:
learning rates 𝛼 ∈ (0,1], 𝛿 ∈ (0,1]
discount factor 𝛾 ∈ (0,1)
exploration rate 𝜖
Qj(a) ← 0 and 𝜋j(a) ← 1|Aj|
Repeat
(a) Select an action a according to the strategy 𝜋

j
t(a) with some exploration

𝜖.
(b) Observe the immediate reward rj.
(c) Update Qj

t+1(a) using Eq. (3.49).
(d) Update the strategy 𝜋

j
t+1(a) by using Eq. (3.50).

We will now run a simulation of the matching pennies games. To generate the
simulation results illustrated in Fig. 3-6, we set the learning rate 𝛼 = 1∕(10 +
0.00001t), the exploration rate to 𝜖 = 0.5∕(1 + 0.0001t), and 𝛿 = 0.0001. We
initialize the probability of player 1 choosing action 1, at 80%. One can see
that the algorithm will oscillate about the NE as expected by the theory. In
this case, both players are learning. For any practical application, this is a poor
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Fig. 3-6. PHC matching pennies game, player 1, probability of choosing action 1, heads.

result. Furthermore, it takes many iterations to converge about the 50% equi-
librium point. Another issue with implementing this algorithm is choosing all
the parameters. In amore complex game, this algorithmwould not be practical
to implement.

In the next case, we set the column player to always play heads, action 1, andwe
start the row player at 20% heads and 80% tails. Then the row player should
learn to always play heads 100% of the time. As illustrated in Fig. 3-7, the
probability of player 1 choosing heads increases and converges to a probability
of 100%.

3.8 WoLF-PHC Algorithm

In Reference 3, the authors propose to use a variable learning rule as

𝛼k+1 = 𝛼k + 𝜂lrk
𝜕Vr(𝛼k, 𝛽k)

𝜕𝛼k
(3.51)

𝛽k+1 = 𝛽k + 𝜂lck
𝜕Vc(𝛼k, 𝛽k)

𝜕𝛽k
(3.52)

where the term l is a variable learning rate given by l ∈ [lmin, lmax] > 0.

The method for adjusting the learning rate l is referred to as the WoLF
approach. The idea is when one is winning the game to adjust the learning
rate to learn slowly and be cautious, and when losing or doing poorly to learn
quickly. The next step is to determine when the agent is doing well or doing
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Fig. 3-7. PHC matching pennies game, player 1, probability of choosing action 1, heads when

player 2 always chooses heads.

poorly in playing the game. The conceptual idea is for the agent to choose
an NE and compare the expected reward it would receive to the NE. If the
reward it would receive is greater than the NE, then it is winning and will
learn slowly and cautiously. Otherwise, it is losing and it should learn fast; the
agent does want to be losing.

The two players each select an NE of their choice independently; they do not
need to choose the same equilibrium point. If there are multiple NE points in
the game, then the agents could pick different points; that is perfectly accept-
able because each NE point will have the same value. Therefore, player 1 may
choose NE point 𝛼e and player 2 may choose NE point 𝛽e, and the learning
rates are chosen as

lrk =

{
lmin if Vr(𝛼k, 𝛽k) > Vr(𝛼e, 𝛽k) Winning
lmax otherwise Losing

lck =

{
lmin if Vc(𝛼k, 𝛽k) > Vc(𝛼k, 𝛽e) Winning
lmax otherwise losing

When we combine the variable learning rate with the IGA algorithm, we refer
to it as theWoLF-IGA algorithm. Although this is not a practical algorithm to
implement, it does have good theoretical properties as defined by the following
theorem.
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Theorem 3.2 If in a two-action iterated general-sum game both players follow
theWoLF-IGA algorithm (with lmax > lmin), then their strategies will converge
to a Nash Equilibrium.

It is interesting to note that winning is defined as the expected reward of the
current strategy being greater than the expected reward of the current player’s
NE strategy and the other player’s current strategy.

The difficulty with the WoLF-IGA algorithm is the amount of information
that the player must have. The player needs to know its own payoff matrix,
the other player’s strategy, and its own NE. Of course, if one knows its own
payoff matrix, then it will also know its NE point or points. That is a lot of
information for the player to know, and as such this is not a practical algorithm
to implement.

The WoLF-PHC algorithm is an extension of the PHC algorithm [3]. This
algorithm uses the mechanism of win-or-learn-fast (WoLF) so that the PHC
algorithm converges to an NE in self-play. The algorithm has two different
learning rates, 𝛿𝑤 when the algorithm is winning and 𝛿l when it is losing. The
difference between the average strategy and the current strategy is used as a
criterion to decide when the algorithm wins or loses. The learning rate 𝛿l is
larger than the learning rate 𝛿𝑤. As such, when a player is losing, it learns faster
than when winning. This causes the player to adapt quickly to the changes in
the strategies of the other player when it is doing more poorly than expected
and learns cautiously when it is doing better than expected. This also gives the
other player the time to adapt to the player’s strategy changes. TheWoLF-PHC
algorithm exhibits the property of convergence as it makes the player converge
to one of its NEs. This algorithm is also a rational learning algorithm because
it makes the player converge to its optimal strategy when its opponent plays
a stationary strategy. These properties permit the WoLF-PHC algorithm to
be widely applied to a variety of stochastic games [3, 11–13]. The recursive
Q-learning of a learning agent j is given as

Qj
t+1(a) = (1 − 𝛼)Qj

t (a) + 𝛼(rj + 𝛾 max
a′

Qj
t (a

′)) (3.53)

The WoLF-PHC algorithm updates the strategy of the agent j by equation
3.54, whereas Algorithm 2.1 describes the complete formal definition of the
WoLF-PHC algorithm for a learning agent j:

𝜋
j
t+1(a) = 𝜋

j
t (a) + Δa (3.54)
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where

Δa =
⎧⎪⎨⎪⎩
−𝛿a if a ≠ argmaxa′Q

j
t (a′)∑

a′≠a
𝛿a′ otherwise 𝛿a = min

(
𝜋
j
t (a),

𝛿|Aj| − 1

)

𝛿 =

⎧⎪⎪⎨⎪⎪⎩
𝛿𝑤 if

∑
a′
𝜋t(a′)Q

j
t+1(a

′) >∑
a′
𝜋̄t+1(a′)Q

j
t+1(a

′)

𝛿l otherwise

𝜋̄
j
t+1(a

′) = 𝜋̄
j
t (a

′) + 1
Ct+1

(𝜋 j
t (a

′) − 𝜋̄
j
t (a

′)) ∀a′ ∈ Aj

Ct+1 = Ct + 1

Algorithm 3.2 The win-or-learn-fast policy hill climbing (WoLF-PHC) algo-
rithm for agent j

Initialize:
learning rates 𝛼 ∈ (0,1], 𝛿𝑤 ∈ (0,1] and 𝛿l > 𝛿𝑤
discount factor 𝛾 ∈ (0,1)
exploration rate 𝜖
Qj(a) ← 0 and 𝜋j(a) ← 1|Aj|
C(s) ← 0
Repeat
(a) Select an action a according to the strategy 𝜋

j
t(a) with some exploration

𝜖.
(b) Observe the immediate reward rj.
(c) Update Qj

t+1(a) using Eq. (3.53).
(d) Update the strategy 𝜋

j
t+1(a) by using Eq. (3.54).

We simulate theWoLF-PHC algorithm for the matching pennies game.We set
the learning parameter 𝛼 = 1∕(10 + 0.00001t) and 𝛿𝑤 = 1∕(20000 + j) and 𝛿l =
2𝛿𝑤. The strategy for player 1 is initially set to 𝜋r = [0.2 0.8] and the strategy
for player 2 to 𝜋 = [0.5 0.5]. The results are shown in Fig. 3-8.

3.9 Decentralized Learning in Matrix Games

Decentralized learningmeans that there is no central learning strategy for all of
the agents. Instead, each agent learns its own strategy. Decentralized learning



58 Multi-Agent Machine Learning: The Reinforcement Approach

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of plays × 100

P
ro

b
a
b
ili

ty

Fig. 3-8. WoLF-PHC matching pennies game, player 1, probability of choosing action 1.

algorithms can be used by players to learn their NEs in games with incomplete
information [14, 15]. When an agent has “incomplete information,” it means
that the agent knows neither its own reward function, nor the other players’
strategies, nor the other players’ reward functions. The agent only knows its
own action and the received reward at each time step. The main challenge for
designing a decentralized learning algorithm with incomplete information is
to prove that the players’ strategies converge to an NE.

There are a number of multiagent learning algorithms proposed in the lit-
erature that can be used for two-player matrix games. Lakshmivarahan and
Narendra [14] presented a linear reward–inaction approach that can guaran-
tee the convergence to a NE under the assumption that the game only has
strict NEs in pure strategies. The linear reward–penalty approach, introduced
in Reference 15, can guarantee that the expected value of players’ strategies
converges to an NE in fully mixed strategies with the proper choice of parame-
ters. Bowling and Veloso proposed aWoLF-IGA approach that can guarantee
the convergence to an NE for two-player two-action matrix games and the NE
can be in fully mixed strategies or in pure strategies. However, the WoLF-IGA
approach is not a completely decentralized learning algorithm because the
player has to know its opponent’s strategy at each time step. Dahl [16, 17] pro-
posed a lagging anchor model approach that can guarantee the convergence
to an NE in fully mixed strategies. But the lagging anchor algorithm is not a
decentralized learning algorithm because each player has to know its reward
matrix.

We evaluate the learning automata algorithm LR−I [14] and LR−P [15], the GA
algorithm WoLF-IGA [3], and the lagging anchor algorithm [16]. We then
propose the new LR−I lagging anchor algorithm. The LR−I lagging anchor
algorithm is a combination of learning automata and GA learning. It is a
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completely decentralized algorithm and, therefore, each agent only needs to
know its own action and its own reward at each time step.We prove the conver-
gence of the LR−I lagging anchor algorithm to NEs in two-player two-action
general-summatrix games. Furthermore, the NE can be in games with pure or
fully mixed strategies. We then simulate three matrix games to test the perfor-
mance of the LR−I lagging anchor learning algorithm.

We first review the multiagent learning algorithms in matrix games based on
the learning automata scheme and the GA schemes. In Section 3.14, we intro-
duce the new LR−I lagging anchor algorithm and provide the proof of conver-
gence toNEs in two-player two-action general-summatrix games. Simulations
of three matrix games are also illustrated in Section 3.14 to show the conver-
gence of our proposed LR−I lagging anchor algorithm.

3.10 Learning Automata

Learning in a two-player matrix game can be expressed as the process of each
player updating its strategy according to the received reward from the envi-
ronment. A learning scheme is used for each player to update its own strategy
toward a NE based on the information from the environment. In order to
address the limitations of the previously published multiagent learning algo-
rithms for matrix games, we divide these learning algorithms into two groups.
One group is based on learning automata [18], and another group is based on
GA learning [9].

Learning automation is a learning unit for adaptive decision making in an
unknown environment [18]. The objective of learning automation is to learn
the optimal action or strategy by updating its action probability distribution
based on the environment response. The learning automata approach is
a completely decentralized learning algorithm because each learner only
considers its action and the received reward from the environment and ignores
any information from other agents such as the actions taken by other agents.
The learning automation can be represented as a tuple (A, r, p,U), where
A = {a1, … , am} is the player’s action set, r ∈ [0, 1] is the reinforcement
signal, p is the probability distribution over the actions, and U is the learning
algorithm to update p. There are two typical learning algorithms based on
learning automata: the linear reward–inaction (LR−I ) algorithm and the
linear reward–penalty (LR−P) algorithm.

3.11 Linear Reward–Inaction Algorithm

The linear reward–inaction (LR−I ) algorithm for player i(i = 1, … , n) is
defined as follows:
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pic(k + 1) = pic(k) + 𝜂ri(k)(1 − pic(k)) if acis the current action at k

pij(k + 1) = pij(k) − 𝜂ri(k)pij(k) for all aij ≠ aic (3.55)

where k is the time step, the superscripts and subscripts on p denote different
players and each player’s different action, respectively, 0 < 𝜂 < 1 is the learning
parameter, ri(k) is the response of the environment given player i’s action aic at
k, and pic is the probability distribution over player i’s action aic(c = 1, … ,m).

In a matrix game with n players, if each player uses the LR−I algorithm, then
the LR−I algorithm guarantees the convergence to a NE under the assumption
that the game only has strict NEs in pure strategies [14].

3.12 Linear Reward–Penalty Algorithm

The linear reward–penalty (LR−P) algorithm for player i is defined as follows:

pic(k + 1) = pic(k) + 𝜂1r
i(k)[1 − pic(k)] − 𝜂2[1 − ri(k)]pic(k)

pij(k + 1) = pij(k) − 𝜂1r
i(k)pij(k) + 𝜂2[1 − ri(k)]

[ 1
m − 1

− pij(k)
]
(for all aij ≠ aic)

(3.56)
where aic is the current action the player i has taken, 0 < 𝜂1, 𝜂2 < 1 are learning
parameters, and m is the number of actions in the player’s action set.

In a two-player zero-summatrix game, if each player uses theLR−P and chooses
𝜂2 < 𝜂1, then the expected value of the fully mixed strategies for both players
can be made arbitrarily close to an NE [15]. This means that the LR−P algo-
rithm can guarantee the convergence to an NE in the sense of expected value
but not the player’s strategy itself.

3.13 The Lagging Anchor Algorithm

The lagging anchor algorithm for two-player zero-sum games was introduced
by Dahl [16]. As a GA learning method, the lagging anchor algorithm updates
the players’ strategies according to the gradient. We denote player 1’s strategy
as a vector v = [p1, p2, … , pm1

]T , which is the probability distribution over all
the possible actions. Accordingly, player 2’s strategy is denoted as a vector
w = [q1, q2, … , qm2

]T . The updating rules are listed as follows:

v(k + 1) = v(k) + 𝜂Pm1
R1Y (k) + 𝜂𝛾(v̄(k) − v(k))

v̄(k) = v̄(k) + 𝜂𝛾(v(k) − v̄(k))

w(k + 1) =w(k) + 𝜂Pm2
R2X (k) + 𝜂𝛾(w̄(k) − w(k))

w̄(k) = w̄(k) + 𝜂𝛾(w(k) − w̄(k)) (3.57)
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where 𝜂 is the step size, 𝛾 > 0 is the anchor drawing factor, and Pmi
= Imi

−
(1∕mi)1mi

1Tmi
is a matrix used to maintain the summation of the elements in

the vector v or w to be 1. Y (k) is a unit vector corresponding to the actions of
player 2. If the mith action in player 2’s action set is selected at time k, then
the mith element in Y (k) is set to 1 and the other elements in Y (k) are zeros.
Similarly, X (k) is the unit vector corresponding to the actions of player 1, and
R1 and R2 are the reward matrices for player 1 and 2, respectively. In (3.57),
v̄ and w̄ are the anchor parameters for v and w, respectively, which can be
represented as the weighted average of the players’ strategies. In a two-player
zero-sum game with only NEs in fully mixed strategies, if each player uses the
lagging anchor algorithm, then the players’ strategies converge to an NE as
the step size 𝜂 → 0 [17].

This algorithm guarantees the convergence to an NE in fully mixed strategies.
However, the convergence to anNE in pure strategies has never been discussed.
Furthermore, the lagging anchor algorithm in (3.57) requires full information
of the player’s reward matrices R1 and R2. Therefore, the lagging anchor algo-
rithm is not a decentralized learning algorithm.

Table 3.2 compares these algorithms based on the allowable number of actions
for each player, the convergence to pure strategies or fully mixed strategies, and
the level of decentralization. From this table, only the WoLF-IGA algorithm
can guarantee the convergence to both pure and mixed-strategy NE. But it
is not a decentralized learning algorithm. Although the LR−I algorithm and
the LR−P algorithm are decentralized learning algorithms, neither of them
can guarantee the convergence to both pure and mixed-strategy NE. The
LR−I lagging anchor algorithm presented in the next section can guarantee
convergence of both pure and mixed strategies to the NE as shown in
Table 3.2.

Table 3.2 Comparison of learning algorithms in matrix games.

Our proposed
Existing algorithms algorithm

Lagging LR−I
Applicability LR−I LR−P WoLF-IGA anchor lagging anchor

Allowable No limit Two actions Two actions No limit Two actions

actions

Convergence Pure Fully mixed NE Both Fully mixed Both

NE (expected value) NE

Decentralized? Yes Yes No No Yes
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3.14 LR−I Lagging Anchor Algorithm

In this section, we design an LR−I lagging anchor algorithm which is a com-
pletely decentralized learning algorithm and can guarantee the convergence
to NEs in both pure and fully mixed strategies. We take the LR−I algorithm
defined in (3.55) as the updating law of the player’s strategy and add the lag-
ging anchor term in (3.57). Then the LR−I lagging anchor algorithm for player
i is defined as follows:

pic(k + 1) = pic(k) + 𝜂ri(k)[1 − pic(k)] + 𝜂[p̄ic(k) − pic(k)]
p̄ic(k + 1) = p̄ic(k) + 𝜂[pic(k) − p̄ic(k)]

}
if aic is the action
taken at time k

pij(k + 1) = pij(k) − 𝜂ri(k)pij(k) + 𝜂[p̄ij(k) − pij(k)]
p̄ij(k + 1) = p̄ij(k) + 𝜂[pij(k) − p̄ij(k)]

}
for all aij ≠ aic (3.58)

where 𝜂 is the step size and (p̄ic, p̄
i
j) are the lagging parameters for (pic, p

i
j). The

idea behind the LR−I lagging anchor algorithm is that we consider both the
player’s current strategy and the long-term average of the player’s previous
strategies at the same time. We expect that the player’s current strategy and the
long-term average will be drawn toward the equilibrium point during learning.

To analyze the above LR−I lagging anchor algorithm, we use ordinary dif-
ferential equations (ODEs). The behavior of the learning algorithm can be
approximated by ODEs as the step size goes to zero. Thathachar and Sastry
[19] provided the equivalent ODEs of the LR−I algorithm in (3.55) as

ṗic =
mi∑
j=1

picp
i
j(d

i
c − dij ) (3.59)

where dic is the expected reward given that player i is choosing action aic and
the other players are following their current strategies.

Combining the above ODEs of the LR−I algorithm in (3.59) with the ODEs
for the lagging anchor part of our algorithm, we can find the equivalent ODEs
for our LR−I lagging anchor algorithm, given as

ṗic =
mi∑
j=1

picp
i
j(d

i
c − dij ) + (p̄ic − pic)

̇̄pic = pic − p̄ic (3.60)
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Based on our proposed LR−I lagging anchor algorithm, we now present the
following theorem:

Theorem 3.3 We consider a two-player two-action general-sum matrix game
and assume the game only has a Nash equilibrium in fully mixed strategies or
strict Nash equilibria in pure strategies. If both players follow the LR−I lag-
ging anchor algorithm, when the step size 𝜂 → 0, then the following is true
regarding the asymptotic behavior of the algorithm:

• All Nash equilibria are asymptotically stable;
• Any equilibrium point which is not a Nash equilibrium is unstable.

Proof: Given a two-player two-action general-sum game defined in (3.6), we
denote p1 as the probability of player 1 taking its first action and q1 as the
probability of player 2 taking its first action. Then the LR−I lagging anchor
algorithm becomes

ṗ1 =
2∑
j=1

p1pj(d11 − d1j ) + (p̄1 − p1)

̇̄p1 = p1 − p̄1

q̇1 =
2∑
j=1

q1qj(d21 − d2j ) + (q̄1 − q1)

̇̄q1 = q1 − q̄1 (3.61)

where d11 = r11q1 + r12(1 − q1), d12 = r21q1 + r22(1 − q1), d21 = c11p1 + c21(1 −
p1), and d22 = c12p1 + c22(1 − p1). Then (3.61) becomes

ṗ1 = p1(1 − p1)[u1q1 + r12 − r22] + (p̄1 − p1)
̇̄p1 = p1 − p̄1

q̇1 = q1(1 − q1)[u2p1 + c21 − c22] + (q̄1 − q1)
̇̄q1 = q1 − q̄1 (3.62)

where u1 = r11 − r12 − r21 + r22 and u2 = c11 − c12 − c21 + c22. If we let the
right-hand side of the above equation equal to zero, we then get the equilib-
rium points of the above equations as (p∗1, q

∗
1) = (0, 0), (0, 1), (1, 0), (1, 1), ((c22 −

c21)∕u2, (r22 − r12)∕u1). To study the stability of the above learning dynamics,
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we use a linear approximation of the above equations around the equilibrium
point (p∗1, q

∗
1, p

∗
1, q

∗
1). Then the linearization matrix J is given as

J(p∗1 ,q∗1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − 2p∗1)(u1q
∗
1+

r12 − r22) − 1
1 p∗1(1 − p∗1)u1 0

1 −1 0 0

q∗1(1 − q∗1)u2 0
(1 − 2q∗1)(u2p

∗
1+

c21 − c22) − 1
1

0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.63)

If we substitute each of the equilibrium points (0, 0), (0, 1), (1, 0), (1, 1) into
(3.63), we get

Jpure =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−e1 − 1 1 0 0

1 −1 0 0

0 0 −e2 − 1 1

0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.64)

where

e1 = r22 − r12, e2 = c22 − c21 for (0, 0); (3.65)

e1 = r21 − r11, e2 = c21 − c22 for (0, 1); (3.66)

e1 = r12 − r22, e2 = c12 − c11 for (1, 0); (3.67)

e1 = r11 − r21, e2 = c11 − c12 for (1, 1) (3.68)

The eigenvalues of the above matrix Jpure are 𝜆1,2 = 0.5[−(e1 + 2) ±
√
e21 + 4)]

and 𝜆3,4 = 0.5[−(e2 + 2) ±
√
e22 + 4)]. In order to obtain a stable equilibrium

point, the real parts of the eigenvalues of Jpure must be negative. Therefore, the
equilibrium point is asymptotically stable if

0.5[−(e1,2 + 2) ±
√
e21,2 + 4)] < 0 ⇒

e1,2 + 2 >
√
e21,2 + 4 ⇒

e1,2 > 0 (3.69)
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For the equilibrium point ((c22 − c21)∕u2, (r22 − r12)∕u1), the linearization
matrix becomes

Jmixed =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 p∗1(1 − p∗1)u1 0

1 −1 0 0

q∗1(1 − q∗1)u2 0 −1 1

0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.70)

The characteristic equation of the above matrix is

𝜆4 + 4𝜆3 + (4 + e3)𝜆2 + 2e3𝜆 + e3 = 0 (3.71)

where e3 = −p∗1(1 − p∗1)q
∗
1(1 − q∗1)u1u2. We set up the Routh table to analyze the

locations of the roots in (3.71) as follows:

λ4 1 4 + e3 e3

λ3 4 2c3

λ2 4 + 0.5 e3 e3

λ1 (e2
3 + 4e3 )/(4 + 0.5e3)

λ0 e3

(3.72)

Based on the Routh–Hurwitz stability criterion, if (3.71) is stable, then all
the coefficients of the equation must be positive and all the elements in the
first column of the Routh table in (3.72) are positive. In order to meet the
Routh–Hurwitz stability criterion, we must have e3 > 0. Therefore, the equi-
librium point ((c22 − c21)∕u2, (r22 − r12)∕u1) is asymptotically stable if

e3 = −p∗1(1 − p∗1)q
∗
1(1 − q∗1)u1u2 > 0 ⇒

u1u2 < 0 (3.73)
◾

Case 3.1 Strict Nash equilibrium in pure strategies We first consider that the
game only has strict Nash equilibrium in pure strategies. Without loss of gen-
erality, we assume that the Nash equilibrium in this case is both players’ first
actions. According to the definition of a strict Nash equilibrium in the inequal-
ity (3.7), if the Nash equilibrium strategies are both players’ first actions, we
can get

r11 > r21, c11 > c12 (3.74)
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Since the Nash equilibrium in this case is the equilibrium point (1, 1), we can
get e1 = r11 − r21 > 0 and e2 = c11 − c12 > 0 based on (3.68) and (3.74). There-
fore, the stability condition (3.69) is satisfied and the equilibrium point (1, 1),
which is the Nash equilibrium in this case, is asymptotically stable.

We now test the other equilibrium points. We first consider the equilib-
rium point ((c22 − c21)∕u2, (r22 − r12)∕u1). According to the stability condition
(3.73), if this equilibrium point is stable, we must have u1u2 < 0. To be a valid
inner point in the probability space (unit square), the equilibrium point ((c22 −
c21)∕u2, (r22 − r12)∕u1) must satisfy{

0 < (c22 − c21)∕u2 < 1
0 < (r22 − r12)∕u1 < 1

(3.75)

If u1u2 < 0, we can get{
r11 > r21, r22 > r12
c11 < c12, c22 < c21

if u1 > 0, u2 < 0 (3.76){
r11 < r21, r22 < r12
c11 > c12, c22 > c21

if u1 < 0, u2 > 0 (3.77)

However, the conditions in the inequalities (3.76) and (3.77) conflict with the
inequalities in (3.74). Therefore, the inequality u1u2 < 0 will not hold and the
equilibrium point ((c22 − c21)∕u2,(r22 − r12)∕u1) is unstable in Case 3.1.

For the equilibrium points (0, 1) and (1, 0), based on (3.66), (3.67),
and (3.69), the stability conditions are r21 > r11, c21 > c22 for (0, 1) and
r12 > r22, c12 > c11 for (1, 0). However, these stability conditions conflict with
the inequalities r11 > r21, c11 > c12 in (3.74). Therefore, the equilibrium points
(0, 1) and (1, 0) are unstable in Case 3.1.

For the equilibrium point (0, 0), the stability condition is r22 > r12, c22 > c21
based on conditions (3.65) and (3.69). From the inequality (3.7), we can find
that this stability condition also meets the requirement for a strict NE (both
players’ second actions) in inequality (3.7). Therefore, the equilibrium point
(0, 0) is stable only if it is also an NE point.

Thus, the NE point is asymptotically stable, while any equilibrium point
which is not an NE is unstable.

Case 3.2 Nash equilibrium in fully mixed strategies We now consider that
the game only has Nash equilibrium in fully mixed strategies. Singh et al. [9]
showed that a Nash equilibrium in fully mixed strategies for a two-player
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two-action general-sum matrix game has the form

(pNE1 , qNE1 ) =
[
c22 − c21

u2
,
r22 − r12

u1

]
(3.78)

where (pNE1 , qNE1 ) denotes the Nash equilibrium strategies over players’ first
actions which happens to be the equilibrium point of (3.62). According to the
condition (3.73), the equilibrium point ((c22 − c21)∕u2, (r22 − r12)∕u1) is asymp-
totically stable if u1u2 < 0. If we assume u1u2 > 0, we can get{

0 < (c22 − c21)∕u2 < 1
0 < (r22 − r12)∕u1 < 1{
r11 > r21, r22 > r12
c11 > c12, c22 > c21

if u1 > 0, u2 > 0 (3.79){
r11 < r21, r22 < r12
c11 < c12, c22 < c21

if u1 < 0, u2 < 0 (3.80)

According to the inequality (3.7), the above equations contain multiple NEs
in pure strategies: (pNE1 , qNE1 ) = (1, 1), (0, 0) if u1 > 0, u2 > 0 and (pNE1 , qNE1 ) =
(0, 1), (1, 0) if u1 < 0, u2 < 0. However, under our assumption, the game in Case
3.2 only has an NE in fully mixed strategies, and NEs in pure strategies do
not exist. Therefore, we always have u1u2 < 0 in Case 3.2 and the equilibrium
point ((c22 − c21)∕u2, (r22 − r12)∕u1), which is also the NE point, is asymptoti-
cally stable.

For the other equilibrium points, based on conditions (3.65)–(3.68) and
(3.69), the stability conditions become

r22 > r12, c22 > c21 for (0, 0) (3.81)

r21 > r11, c21 > c22 for (0, 1) (3.82)

r12 > r22, c12 > c11 for (1, 0) (3.83)

r11 > r21, c11 > c12 for (1, 1) (3.84)

As already noted, the game in Case 3.2 only has anNE in fully mixed strategies
and we always have u1u2 < 0. Then the inequalities (3.76) and (3.77) are true
in Case 3.2. However, the stability conditions (3.81)–(3.84) for the equilibrium
points (0, 0), (0, 1), (1, 0), (1, 1) conflict with the inequalities (3.76) and (3.77).
Therefore, the equilibrium points other than ((c22 − c21)∕u2, (r22 − r12)∕u1) are
unstable in this case.

Thus we can conclude that the NE point is asymptotically stable while the
other equilibrium points are unstable in Case 3.2.
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3.14.1 Simulation

We now simulate three matrix games to show the performance of the LR−I
lagging anchor algorithm. The first game is the matching pennies game. This
game is a two-player zero-sum game and each player has two actions: heads
or tails. If both players choose the same action, then player 1 gets a reward
1 and player 2 gets a reward −1. If the actions are different, then player 1
gets −1 and player 2 gets 1. Based on the reward matrix in Table 3.1(a) and
the solutions in Example 3.1, the NE in this game is in fully mixed strategies
such that each player plays heads and tails with a probability of 0.5. We set
the step size 𝜂 = 0.001 in (3.58) and p1(0) = q1(0) = 0.2. We run the simulation
for 30,000 iterations. In Fig. 3-9, the players’ probabilities of taking their first
actions start from (0.2, 0.2) and move close to the NE point (0.5, 0.5) as the
learning proceeds.

The second game we simulate is a two-player general-sum game, namely the
prisoners’ dilemma. In this game, we have two players and each player has two
actions: defect or cooperate. A player receives a reward of 10 if it defects and
the other player cooperates, or receives a reward of 0 if it cooperates and the
other player defects. If both players cooperate, each player receives a reward
of 5. If they both defect, each player receives a reward of 1. The reward matrix
is shown in Table 3.3(b), where one player’s reward matrix is the transpose of
the other player’s reward matrix. This game has a unique NE in pure strategies
which is both players playing defect.We set the step size 𝜂 = 0.001 in (3.58) and
p1(0) = q1(0) = 0.5. We run the simulation for 30,000 iterations. Figure 3-10
shows that the players’ strategies move close to theNE strategies (both players’
second actions) as the learning proceeds.

Table 3.3 Examples of two-player matrix games.

(a) Matching Pennies (b) Prisoners’ Dilemma (c) Rock-Paper-Scissors

R2 = −R1 R2 = (R1)T R2 = −R1

NE in fully mixed strategies NE in pure strategies NE in fully mixed strategies

R1 =
⎡
⎢
⎣

⎡
⎢
⎣

1

−1

−1

1
, R1 =

⎡
⎢
⎣

⎡
⎢
⎣

5

10

0

1
, R1 =

⎡
⎢
⎢
⎣

⎡
⎢
⎢
⎣

0

1

−1

0

1

−1

−1 1 0

,
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Fig. 3-9. Trajectories of players’ strategies during learning in matching pennies. Reproduced

from [8], © X. Lu.
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Fig. 3-10. Trajectories of players’ strategies during learning in prisoners’ dilemma.

Reproduced from [8], © X. Lu.
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Fig. 3-11. Trajectories of players’ strategies during learning in rock-paper-scissors.

Reproduced from [8], © X. Lu.

The third game we simulate in this chapter is the rock-paper-scissors game.
This game has two players and each player has three actions: rock, paper, and
scissors. A winner in the game is determined by the following rules: paper
defeats rock, scissors defeats paper, and rock defeats scissors. The winner
receives a reward of 1 and the loser receives −1. If both players choose the
same action, each player gets 0. The reward matrix is shown in Table 3.3(c).
This game has an NE in fully mixed strategies which is each player choosing
any action with the same probability of 1∕3. We set the step size 𝜂 = 0.001,
p1(0) = q1(0) = 0.6, and p2(0) = q2(0) = 0.2. We run the simulation for 50,000
iterations. Although we only prove the convergence for two-player two-action
games, the result in Fig. 3-11 shows that the proposed LR−I lagging anchor
algorithm may be applicable to a two-player matrix game with more than two
actions.
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