
Chapter 4

Learning in Multiplayer Stochastic Games

4.1 Introduction

The agents in a multiagent system can be to some degree preprogrammed with
behaviors designed in advance. It is often necessary that the agents be able
to learn online such that the performance of the multiagent system improves.
However, typically a multiagent system is very complex and preprogramming
the system is for practical reasons impossible. Furthermore, the dynamics of
the agents and the environment can change over time and learning and adap-
tation is required.

In early work on multiagent reinforcement learning (MARL) for stochastic
games [1], it was recognized that no agent works in a vacuum. In his seminal
paper, Littman [1] focused on only two agents that had opposite and oppos-
ing goals. This means that they could use a single reward function which one
tried to maximize and the other tried to minimize. The agent had to work with
a competing agent and had to behave so as to maximize their reward in the
worst possible case. They also recognized the need for mixed strategies because
the agent or player could not be certain of the action taken by its opponent.
Littman [1] introduced the minimax Q-learning algorithm. We have already
shown the idea of theminimaxQ-learning algorithm in Chapter 3, Section 3.2.
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In a rational multiagent game, each agent must keep track in some way of
what the other learning agents are doing. The types of games and situations
that the learning agent may encounter include fully competitive games that
are zero-sum games. There are also general-sum cooperative games, where the
agents try to get the maximum reward by cooperating with each other. For
example, in the prisoners’ dilemma problem, if it is a cooperative game, then
each player should lie to the police and cooperate with each other and get
the least time in jail. However, if it is a competitive game, then they should
each defect to mitigate against the worst case scenario where one lies to police
and the opponent confesses and the first one goes to jail for life. However, the
agents must communicate to cooperate with each other.

Typically, in a multiagent system, the agents must keep track of the other
agents’ behaviors such that a coherent behavior results. Furthermore, we have
the issue of scalability to consider. The agents must keep track of a large num-
ber of possible states and joint actions.

Learning in stochastic games can be formalized as a MARL problem [2].
Agents select actions simultaneously at the current state and receive rewards
at the next state. Different from the algorithm that can solve for a Nash equi-
librium in a stochastic game, the goal of a reinforcement learning algorithm
is to learn equilibrium strategies through interaction with the environment.
Generally, in a MARL problem, agents may not know the transition function
or the reward function from the environment. Instead, agents are required to
select actions and observe the received reward and the next state in order to
gain information of the transition function or the reward function.

Rationality and convergence are two desirable properties for multiagent learn-
ing algorithms in stochastic games [2]. When we say that a player is rational,
we mean that, if the other players’ policies converge to stationary policies, then
the learning algorithm for will converge to a policy that is a best response to the
other players’ policies.What does thismean? Let us say that you are playing the
matching pennies game against a bad player who always plays heads. You win
whenever you both play heads or tails. At first, you assume that your opponent
is a rational player and, therefore, you assume that your opponent is playing
the rational strategy of playing heads and tails each 50% of the time. Therefore,
you start out playing heads and tails 50% of the time. However, after a number
of plays you realize that your opponent always seems to be playing heads as his
stationary strategy. You would then quickly shift and begin to also play heads
all the time. Then you always win and you are playing the rational strategy but
your opponent is not playing a rational strategy.
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In the stochastic learning algorithms, we also have the idea of convergence.
Let us say that all the other players are playing a stationary strategy. They
are not learning or changing their strategy in any way. Then you adapt to this
behavior and converge to some rational strategy. Or, let us say that everyone in
the game is adapting according to the same algorithm. Then do all the players
converge to an optimal strategy or a Nash equilibrium? If all the players use
rational learning algorithms and their policies converge, then they must have
converged to an equilibrium. Each player will play the best response to all
other players.

In this chapter, we review some existing reinforcement learning algorithms in
stochastic games. We analyze these algorithms based on their applicability,
rationality, and convergence properties.

Isaacs [3] introduced a differential game of guarding a territory where a
defender tries to intercept an invader before the invader reaches the territory.
In this chapter, we introduce a grid version of Isaacs’ game called the grid
game of guarding a territory. It is a two-player zero-sum stochastic game
where the defender plays against the invader in a grid world. We then study
how the players learn to play the game using MARL algorithms. We apply
two reinforcement learning algorithms to this game and test the performance
of these learning algorithms based on the convergence and rationality
properties.

4.2 Multiplayer Stochastic Games

A Markov decision process contains a single player and multiple states,
whereas a matrix game contains multiple players and a single state. For a
game with more than one player and multiple states, we define a stochastic
game (orMarkov game) as the combination ofMarkov decision processes and
matrix games. A stochastic game is a tuple (n,S,A1, … ,An,T , 𝛾,R1, … ,Rn)
where n is the number of the players, T ∶ S × A1 × · · · × An × S → [0, 1] is
the transition function, Ai(i = 1, … , n) is the action set for the player i,
𝛾 ∈ [0, 1] is the discount factor, and Ri ∶ S × A1 × · · · × An × S → ℝ is the
reward function for player i. The transition function in a stochastic game is
a probability distribution over next states given the current state and joint
action of the players. The reward function Ri(s, a1, … , an, s

′) denotes the
reward received by player i in state s′ after taking joint action (a1, … , an) in
state s. Similar to Markov decision processes, stochastic games also have the
Markov property. That is, the player’s next state and reward depend only on
the current state and all the players’ current actions.
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For a multiplayer stochastic game, we want to find the Nash equilibria in the
game if we know the reward function and transition function in the game.
A Nash equilibrium in a stochastic game can be described as a tuple of n
strategies (𝜋∗

1 , … , 𝜋∗
n ) such that for all s ∈ S and i = 1, … , n,

Vi(s, 𝜋∗
1 , … , 𝜋∗

i , … , 𝜋∗
n ) ≥ Vi(s, 𝜋∗

1 , … , 𝜋i, … , 𝜋∗
n ) for all 𝜋i ∈ Πi (4.1)

where Πi is the set of strategies available to player i, and Vi(s, 𝜋∗
1 , … , 𝜋∗

n ) is the
expected sum of discounted rewards for player i given the current state and
all the players’ equilibrium strategies. To simplify notation, we use V∗

i (s) to
represent Vi(s, 𝜋∗

1 , … , 𝜋∗
n ) as the state-value function under Nash equilibrium

strategies. We can also define the action-value functionQ∗(s, a1, … , an) as the
expected sum of discounted rewards for player i given the current state and
the current joint action of all the players, and following the Nash equilibrium
strategies thereafter. Then we can get

V∗
i (s) =

∑
a1,… , an∈A1× ··· ×An

Q∗
i (s, a1, … , an)𝜋∗

1 (s, a1) · · ·𝜋
∗
n (s, an) (4.2)

Q∗
i (s, a1, … , an) =

∑
s′∈S

T(s, a1, … , an, s
′)[Ri(s, a1, … , an, s

′) + 𝛾V∗
i (s

′)] (4.3)

where 𝜋∗
i (s, ai) ∈ PD(Ai) is a probability distribution over action ai under

player i’s Nash equilibrium strategy, T(s, a1, … , an, s
′) = Pr{sk+1 = s′|sk =

s, a1, … , an} is the probability of the next state being s′ given the current
state s and joint action (a1, … , an), and Ri(s, a1, … , an, s

′) is the expected
immediate reward received in state s′ given the current state s and joint action
(a1, … , an). Based on (4.2) and (4.3), the Nash equilibrium in (4.1) can be
rewritten as∑

a1,… , an∈A1× ··· ×An

Q∗
i (s, a1, … , an)𝜋∗

1 (s, a1) · · ·𝜋
∗
i (s, ai) · · ·𝜋

∗
n (s, an)

≥
∑

a1,… ,an∈A1×···×An

Q∗
i (s, a1, … , an)𝜋∗

1 (s, a1) · · ·𝜋i(s, ai) · · ·𝜋
∗
n (s, an) (4.4)

Stochastic games can be classified on the basis of the players’ reward func-
tions. If all the players have the same reward function, the game is called a fully
cooperative game or a team game. If one player’s reward function has always the
opposite sign of the other player’s, the game is called a two-player fully compet-
itive game or zero-sum game. For the game with all types of reward functions,
we call it a general-sum stochastic game.

To solve a stochastic game, we need to find a strategy 𝜋i ∶ S → Ai that can
maximize player i’s discounted future reward with a discount factor 𝛾. Similar
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to the strategy in matrix games, the player’s strategy in a stochastic game
is probabilistic. An example is the soccer game introduced by Littman [1],
where an agent on the offensive side must use a probabilistic strategy to pass
an unknown defender. In the literature, a solution to a stochastic game is
described as Nash equilibrium strategies in a set of associated state-specific
matrix games [1, 4]. A state-specific matrix game is also called a stage game.
In these state-specific matrix games, we define the action-value function
Q∗
i (s, a1, … , an) as the expected reward for player i when all the players take

joint action a1, … , an in state s and follow the Nash equilibrium strategies
thereafter. If the value of Q∗

i (s, a1, … , an) is known for all the states, we
can find player i’s Nash equilibrium strategy by solving the associated
state-specific matrix game [4]. Therefore, for each state s, we have a matrix
game and we can find the Nash equilibrium strategies in this matrix game.
Then the Nash equilibrium strategies for the game are the collection of Nash
equilibrium strategies in each state-specific matrix game for all the states. We
present an example here.

Example 4.1 We define a 2 × 2 grid game with two players denoted as P1
and P2. Two players’ initial positions are located at the bottom left corner for
player 1 and the upper right corner for player 2, as shown in Fig. 4-1a. Both
players try to reach one of the two goals denoted as “G” in minimum num-
ber of steps. Starting from their initial positions, each player has two possible
moves which are moving up or right for player 1, and moving left or down
for player 2. Figure 4-1b shows the numbered cells in this game. Each player
takes an action and moves one cell at a time. The game ends when either of
the players reaches the goal and receives a reward 10. The dashed line between
the upper cells and the bottom cells in Figure 4-1a is the barrier that the player
can pass through with a probability 0.5. If both players move to the same cell,
both players bounce back to their original positions. Figure 4-1c shows the
possible transitions in the game. The number of possible states (players’ joint
positions) is seven containing the players’ initial positions s1 = (2, 3) and six
terminal states (s2, … , s7).

According to the above description of the game, we can find the Nash equi-
librium strategies in this example. The players need to avoid the barrier and
move to the goals next to them without crossing the barrier. Therefore, the
Nash equilibrium is the players’ joint action (a1 = Right, a2 = Left). Based on
(4.2) and (4.3), the state-value function V∗

i (s1) under the Nash equilibrium
strategies is

V∗
i (s1) =Ri(s1, Right, Left,s7) + 𝛾V∗

i (s7)

= 10 + 0.9 ⋅ 0 = 10 (4.5)
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s4 = (1, 4)

s1 = (2, 3) 

s3 = (1, 3) s2 = (2, 4)

s5 = (2, 1) s6 = (4, 3)

s7 = (4, 1)

G

1 3G

2 4

(Up, Left) 

(Up, Down)

0.25

0.250.25

0.25

(Right, Left) 

(Right, Down) 0.5

0.5 0.5

0.5

(a)

(c)

(b)

Fig. 4-1. Example of stochastic games. (a) A 2 × 2 grid game with two players. (b) The numbered

cells in the game. (c) Possible state transitions given players’ joint action (a1,a2). Reproduced

from [5], © X. Lu.

where 𝛾 = 0.9, Ri(s1, Right, Left, s7) = 10, and V∗
i (s7) = 0 (the state-value

functions at terminal states are always zero). We can also find the
action-value function Q∗

i (s1, a1, a2). For example, the action-value function
Q∗

1(s1, Up, Down) for player 1 can be written as

Q∗
1(s1, Up, Down) =

∑
s′= s1∼s4

T(s1, Up, Down, s′)[R1(s1, Up, Down,s′) + 𝛾V∗
1 (s

′)]

= 0.25(0 + 0.9V∗
1 (s1)) + 0.25(0 + 0.9V∗

1 (s2))

+0.25(10 + 0.9V∗
1 (s3)) + 0.25(10 + 0.9V∗

1 (s4))

= 0.25 ⋅ 0.9 ⋅ 10 + 0.25 ⋅ 0 + 0.25 ⋅ 10 + 0.25 ⋅ 10

= 7.25 (4.6)

Table 4.1 shows the action-value functions under the players’ Nash equilib-
rium strategies.
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Table 4.1 Action-value function Q∗
i
(s1,a1,a2) in Example 4.1.

a2

Q∗
1(s1, a1, a2) Left Down

a1

Up 4.5 7.25

Right 10 9.5

a2

Q∗
2(s1, a1, a2) Left Down

a1

Up 9.5 7.25

Right 10 4.5

4.3 Minimax-Q Algorithm

Littman [1] proposed a minimax-Q algorithm specifically designed for
two-player zero-sum stochastic games. The minimax-Q algorithm uses the
minimax principle to solve for players’ Nash equilibrium strategies and values
of states for two-player zero-sum stochastic games. Similar to Q-learning,
minimax-Q algorithm is a temporal-difference learning method that performs
backpropagation on values of states or state-action pairs. We show the
minimax-Q algorithm as follows:

In a two-player zero-sum stochastic game, given the current state s, we define
the state-value function for player i as

V∗
i (s) = max

𝜋i(s,⋅)
min
a−i∈A−i

∑
ai∈Ai

Q∗
i (s, ai, a−i)𝜋i(s, ai), (i = 1, 2) (4.7)

where −i denotes player i’s opponent, 𝜋i(s, ⋅) denotes all the possible strategies
of player i at state s, and Q∗

i (s, ai, a−i) is the expected reward when player i
and its opponent choose action ai ∈ Ai and a−i ∈ A−i, respectively, and follow
their Nash equilibrium strategies after that. If we know Q∗

i (s, ai, a−i), we can
solve Eq. (4.7) and find player i’s Nash equilibrium strategy 𝜋∗(s). Similar to
finding the minimax solution for (3.8), one can use linear programming to
solve Eq. (4.7). For a MARL problem, Q∗

i (s, ai, a−i) is unknown to the players
in the game.

The minimax-Q algorithm is listed in Algorithm 4.1. The minimax-Q
algorithm can guarantee the convergence to a Nash equilibrium if all the
possible states and players’ possible actions are visited infinitely often.
The proof of convergence for the minimax-Q algorithm can be found in
Reference 6. One drawback of this algorithm is that we have to use linear
programming to solve for 𝜋i(s) and Vi(s) at each iteration in Algorithm 4.1.
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Algorithm 4.1 Minimax-Q algorithm

1: Initialize Qi(s, ai, a−i), Vi(s) and 𝜋i
2: for Each iteration do
3: Player i takes an action ai from current state s based on an

exploration-exploitation strategy
4: At the subsequent state s′, player i observes the received reward ri and

the opponent’s action taken at the previous state s.
5: Update Qi(s, ai, a−i) ∶

Qi(s, ai, a−i) ← (1 − 𝛼)Qi(s, ai, a−i) + 𝛼
[
ri + 𝛾Vi(s′)

]
(4.8)

where 𝛼 is the learning rate and 𝛾 is the discount factor.
6: Use linear programming to solve Eq. (4.7) and obtain the updated 𝜋i(s)

and Vi(s)
7: end for

This will lead to a slow learning process. Also, in order to perform linear pro-
gramming, the player i has to know the opponent’s action space.

Using the minimax-Q algorithm, the player will always play a “safe” strategy
in case of the worst scenario caused by the opponent. However, if the opponent
is currently playing a stationary strategy which is not its equilibrium strategy,
the minimax-Q algorithm cannot make the player adapt its strategy to the
change in the opponent’s strategy. The reason is that the minimax-Q algorithm
is an opponent-independent algorithm and it will converge to the player’sNash
equilibrium strategy no matter what strategy the opponent uses. If the player’s
opponent is a weak opponent that does not play its equilibrium strategy, then
the player’s optimal strategy is not the same as its Nash equilibrium strategy.
The player’s optimal strategy will do better than the player’s Nash equilibrium
strategy in this case.

Overall, the minimax-Q algorithm, which is applicable to zero-sum stochastic
games, does not satisfy the rationality property but satisfies the convergence
property. The following example of a 2 × 2 grid game demonstrates the algo-
rithm.

4.3.1 2 × 2 Grid Game

The playing field of the 2 × 2 grid game is shown in Fig. 4-2. The territory to
be guarded is located at the bottom-right corner. Initially, the invader starts
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at the top-left corner while the defender starts at the same cell as the territory.
To better illustrate the guarding a territory problem, we simplify the possible
number of actions of each player to 2. The invader can only move down or
right, while the defender can only move up or left. The capture of the invader
happens when the defender and the invader move into the same cell excluding
the territory cell. The game ends when the invader reaches the territory or the
defender catches the invader before it reaches the territory. We suppose both
players start from the initial state s1, as shown in Fig. 4-2a. There are three
nonterminal states (s1, s2, s3) in this game shown in Fig. 4-2. If the invader
moves to the right cell and the defender happens tomove left, then both players
reach the state s2 in Fig. 4-2b. If the invader moves down and the defender
moves up simultaneously, then they will reach the state s3 in Fig. 4-2c. In states
s2 and s3, if the invader is smart enough, it can always reach the territory no
matter what action the defender will take. As such, the game only has one step
because, if the invader gets to state s2 or s3, it de facto wins. Therefore, starting
from the initial state s1, a clever defender will try to intercept the invader by
guessing which direction the invader will go.

We define the reward functions for the players. The reward function for the
defender is defined as

RD =

{
distIT , defender captures the invader

−10, invader reaches the territory
(4.9)

where

distIT = |xI (tf ) − xT | + |yI (tf ) − yT |

(a) (b) (c)

Fig. 4-2. A 2 × 2 grid game. (a) Initial positions of the players: state s1. (b) Invader in top-right

versus defender in bottom-left: state s2. (c) Invader in bottom-left versus defender in top-right:

state s3. Reproduced from [5], © X. Lu.
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The reward function for the invader is given by

RI =

{
−distIT , defender captures the invader

10, invader reaches the territory
(4.10)

The reward functions (4.9) and (4.10) are also used in the 6 × 6 grid game.

Before the simulation, we can simply solve this game similar to solving
Example 4.1. In the states s2 and s3, a smart invader will always reach the
territory without being intercepted. The value of the states s2 and s3 for the
defender will be VD(s2) = −10 and VD(s3) = −10. We set the discount factor
as 0.9 and we can get Q∗

D(s1, aleft, oright) = 𝛾VD(s2) = −9, Q∗
D(s1, aup, odown) =

𝛾VD(s3) = −9, Q∗
D(s1, aleft, odown) = 1, and Q∗

D(s1, aup, oright) = 1, as shown
in Table 4.2 and Table 4.3a. Under the Nash equilibrium, we define the
probabilities of the defender moving up and left as 𝜋∗

D(s1, aup) and 𝜋∗
D(s1, aleft),

respectively. The probabilities of the invader moving down and right are
denoted as 𝜋∗

I (s1, oup) and 𝜋∗
I (s1, oleft), respectively. Based on the Q-values in

Table 4.3a, we can find the value of the state s1 for the defender by solving a
linear programming problem shown in Table 4.3b. The approach for solving
a linear programming problem can be found in Section 3.2.

We define R(s, a, o) to denote the immediate reward to the agent for taking
action a ∈ A in state s ∈ S when its opponents take action o ∈ O. The idea is
for the agent to maximize its reward in the worst possible case. In other words,
the agent assumes that the other agent is playing its best possible strategy in
a purely competitive game. Therefore, the agent’s optimal policy would be to
maximize the minimum possible reward. Just like in the case of the prison-
ers’ dilemma, the action should be to defect because this will limit cost of the
worst possible outcome regardless of what the other player does. If the pris-
oner/player decides not to defect, and if the other player does defect, then the
prisoner/player will go to jail for a long time; therefore, to maximize the worst
possible outcome, the prisoner/player should defect.

Now imagine that we would be satisfied with a policy that guarantees an
expected reward R no matter what the other player, in this case an opponent,
chooses as its action. In this case, the defender’s reward matrix in state s1 is

RD(s1) =
[
−9 1
1 −9

]
(4.11)

Recall that the policy in this case is given as the probability that the agent in
state s1 will choose to go up, 𝜋D(s1, aup), and the probability that the agent will
choose to go left, 𝜋D(s1, aleft).
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Table 4.2 Minimax solution for

the defender in the state s1.

Defender

Q∗
D Up Left

Invader

Down −9 1

Right 1 −9

Then we get the following equations for the expected reward, regardless of
which action the opponent takes:

(−9) ⋅ 𝜋D(s1, aup) + (1) ⋅ 𝜋D(s1, aleft) = R̄

(1) ⋅ 𝜋D(s1, aup) + (−9) ⋅ 𝜋D(s1, aleft) = R̄

𝜋D(s1, aup) + 𝜋D(s1, aleft) = 1

Therefore, the goal is to maximize the expected reward R̄ regardless of what
the opponent does.

After solving the linear constraints in Table 4.3b, we get the value of the state
s1 for the defender as VD(s1) = −4 and the Nash equilibrium strategy for the
defender as 𝜋∗

D(s1, aup) = 0.5 and 𝜋∗
D(s1, aleft) = 0.5. For a two-player zero-sum

game, we can getQ∗
D = −Q∗

I . Similar to the approach in Table 4.3, we can find
the minimax solution of this game for the invader asVI (s1) = 4, 𝜋∗

I (s1, odown) =
0.5, and 𝜋∗

I (s1, oright) = 0.5. Therefore, the Nash equilibrium strategy of the
invader is to move down or right with probability 0.5, and the Nash equilib-
rium strategy of the defender is to move up or left with probability 0.5.

Table 4.3 Minimax solution for the defender in the state s1.

(a) Q-values of the defender for the state s1. (b) Linear

constraints for the defender in the state s1.

Defender

Q∗
D Up Left

Invader
Down −9 1

Right 1 −9

(a)

Objective: Maximize R

(−9) · πD (s1, aup)+(1) · πD (s1, aleft) ≥ R

(1) · πD (s1, aup)+ (−9) · πD (s1,aleft) ≥ R

πD (s1, aup)+πD (s1,aleft) = 1

(b)



84 Multi-Agent Machine Learning: The Reinforcement Approach

The implementation of the minimax Q-learning algorithm begins by initializ-
ing theQmatrix, the value functionV (s), and the policy 𝜋i(a) for each agent. In
the example shown here, we initialize Q(s, ai, a−i) = 0 and Vi(s) = 0. We arbi-
trarily initialized the probability of the defender to go up as 𝜋d(up) = 1.0 and
𝜋d(left) = 0.0 and of the invader 𝜋i(right) = 1.0 and 𝜋i(down) = 0.0. We set the
discount factor as 𝛾 = 0.9, the learning rate to 𝛼 = 0.1, and the exploration
probability to 𝜀 = 0.1. The constraint condition for the linear programming
problem for the defender is

RD(s, up, right)𝜋(s1, up) +RD(s, left, right)𝜋(s1), left) ≥ VD(s1)

RD(s, up, down)𝜋(s1, up) +RD(s, left, down)𝜋(s1), left) ≥ VD(s1)

𝜋D(s1, up) + 𝜋D(s1, left) = 1 (4.12)

Similarly, for the invader we get

RI (s, right, up)𝜋I (s1, right) +RI (s, down, up)𝜋I (s1), down) ≥ VI (s1)

RI (s, right, left)𝜋I (s1, right) +RI (s, down, left)𝜋I (s1), down) ≥ VI (s1)

𝜋I (s1, right) + 𝜋I (s1, down) = 1 (4.13)

The linear programming algorithm is run separately for both the invader and
the defender. The algorithm (such as the simplex method) will determine the
values of 𝜋D(s1, up), 𝜋D(S1, left), andVD(s1) at each iteration. The agents do not
know a priori the rewards. The best estimate of the rewards is the state-action
function Q(s, a). Therefore, the minimax Q-learning algorithm updates both
the expected rewards and the policy, 𝜋(s, a), simultaneously. To use MATLAB
to compute the linear programming solution, we need to get the equations into
the correct form. MATLAB structures the linear programming problem as

min
x
f Tx (4.14)

given the constraints

A ⋅ x ≤ b inequality constraints

Aeq ⋅ x = beq equality constraints

and
lb ≤ x ≤ ub lower and upper bounds on x

Notice that MATLAB formulates the problem as a minimization problem.
We convert the reward maximization problem in the minimax algorithm into



Learning in Multiplayer Stochastic Games 85

a minimization problem by multiplying by −1. We substitute the agents’ best
estimate of its reward for RD(s1, ai, a−i) and RI (s1, ai, a−i) with QD(s1, ai, a−i)
and QI (s1, ai, a−i) and rewrite the minimization problem for the defender and
the invader. For the case of the defender, we write the minization problem as

min
xd

f Td xd

where f TD = [0, 0,−1] and xT
d
= [𝜋D(s1, up), 𝜋D(s1, left),VD(s1)], subject to the

constraint

−QD(s1, up, right)𝜋D(s1, up) −QD(s1, left, right)𝜋D(s1, left) + VD(s1) ≤ 0

−QD(s1, up, down)𝜋D(s1, up) −QD(s1, left, down)𝜋D(s1, left) + VD(s1) ≤ 0

and
𝜋D(s1, up) + 𝜋D(s1, left) = 1

Then the matrix A becomes

A =

[
−QD(s1, up, right) −QD(s1, left, right) 1

−QD(s1, up, down) −QD(s1, left, down) 1

]

The matrix b becomes b = [0 0]T . The equivalency condition, which states
that the action probabilities sum to 1, is given by

Aeq = [𝜋D(s1, up) 𝜋D(s1, left)]

and beq = 1.

For the sake of completeness, we also write out the matrix equations for the
invader as

min
xI

f TI xI

where f TI = [0, 0,−1] and xTI = [𝜋I (s1, right), 𝜋I (s1, down),VI (s1)], subject to
the constraint

−QI (s1, right, up)𝜋I (s1, right) −QI (s1, down, up)𝜋I (s1, down) + VI (s1) ≤ 0

−QI (s1, right, left)𝜋D(s1, right) −QI (s1, down, left)𝜋I (s1, down) + VI (s1) ≤ 0

and
𝜋I (s1, right) + 𝜋I (s1, down) = 1
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Then the matrix A becomes

A =

[
−QI (s1, up, right) −QI (s1, left, right) 1

−QI (s1, up, down) −QI (s1, left, down) 1

]
The matrix b becomes b = [0 0]T . The equivalency condition, which states
that the action probabilities sum to 1, is given by

Aeq = [𝜋I (s1, right) 𝜋I (s1, down)]

and beq = 1.

We first apply the minimax-Q algorithm to the game. To better examine the
performance of the minimax-Q algorithm, we use the same parameter settings
as in Reference 1. We use the 𝜀-greedy policy as the exploration-exploitation
strategy. The 𝜀-greedy policy is defined such that the player chooses an action
randomly from the player’s action set with a probability 𝜀 and a greedy action
with a probability 1 − 𝜀. The greedy parameter 𝜀 is given as 0.2. The learning
rate 𝛼 is chosen such that the value of the learning rate will decay to 0.01 after
one million iterations. The discount factor 𝛾 is set to 0.9. The number of iter-
ations represents the number of times the step 2 is repeated in Algorithm 4.1.
After learning, we plot the players’ learned strategies in Fig. 4-3.
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4.4 Nash Q-Learning

The Nash Q-learning algorithm, first introduced in Reference 7, extends the
minimax-Q algorithm [1] from zero-sum stochastic to general-sum stochastic
games. In the Nash Q-learning algorithm, the Nash Q-values need to be cal-
culated at each state in order to update the action-value functions and find the
equilibrium strategies. Although Nash Q-learning is applied to general-sum
stochastic games, the conditions for the convergence to a Nash equilibrium
do not cover a correspondingly general class of environments [8]. The corre-
sponding class of environments are actually limited to cases where the game
being learned only has coordination or adversarial equilibrium [8, 10]. The
Nash Q-Learning algorithm is shown in Algorithm 4.2.

Algorithm 4.2 Nash Q-learning algorithm

1: Initialize Qi(s, a1,… , an) = 0, ∀ai ∈ Ai, i = 1,… , n
2: for Each iteration do
3: Player i takes an action ai from current state s based on an

exploration-exploitation strategy
4: At the subsequent state s′, player i observes the rewards received from

all the players r1,… , rn, and all the players’ actions taken at the previous
state s.

5: Update Qi(s, a1,… , an):

Qi(s, a1,… , an) ← (1 − 𝛼)Qi(s, a1,… , an) + 𝛼
[
ri + 𝛾NashQi(s′)

]
(4.15)

where 𝛼 is the learning rate and 𝛾 is the discount factor
6: Update NashQi(s) and 𝜋i(s) using quadratic programming
7: end for

To guarantee the convergence to Nash equilibria in general-sum stochastic
games, the Nash Q-learning algorithm needs to hold the following condition
during learning: every stage game (or state-specific matrix game) has a global
optimal point or a saddle point for all time steps and all the states [8]. Since
the above strict condition is defined in terms of the stage games as perceived
during learning, it cannot be evaluated in terms of the actual game being
learned [8]. Similar to theminimaxQ-learning, theNashQ-learning algorithm
needs to solve the appropriate search algorithm (such as the Lemke–Howson
algorithm) at each iteration in order to obtain the NashQ-values, which leads
to a slow learning process.
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The Nash Q-learning algorithm extends the Q-learning algorithm to the non-
cooperative multiagent context. The learning agent maintains a Q-function
over joint actions and performs updates by assuming the existence of Nash
equilibrium. This algorithm provably converges given certain constraints on
stage games. Hu and Wellman [8] find that agents are more likely to reach a
joint optimal path with Nash-Q than with single-agent Q-learning. Although
the single-agent properties ofQ-learning do not transfer to themultiagent case,
the ease of application does.

Direct implementation of Q-learning to the multiagent context is affected by
three issues. The environment is no longer stationary, the familiar guaran-
tees are no longer true, and the nonstationary environment is populated by
other agents which we assume to be rational. Explicitly accounting for the fact
that the agent is operating with other “rational” agents improves the learn-
ing process [1, 8, 11]. The reward depends on the joint actions of the other
learners. The default or baseline solution concept for general-sum games is
the Nash equilibrium. In the framework of general-sum stochastic games, we
define optimalQ-values as those values received in Nash equilibrium and refer
to them as Nash Q-values. The goal is to find the Nash Q-values through
repeated play. Agents have to learn the behavior of the other agents and then
determine their own best response. In Reference 8, two grid games are pro-
posed. In grid game 1, there are three equally valued global optimal points.
Grid game 2 does not have a saddle point or a global optimal point but three
sets of other Nash equilibria and in these cases the algorithm does not always
converge.

As we recall from the single-agent Q-learning, the agent’s objective is to find
a strategy (policy) 𝜋 so as to maximize the sum of discounted future rewards,
given by

V (s, 𝜋) =
∞∑
t=0

𝛽′E(rt|𝜋, s0 = s) (4.16)

The search algorithm attempts to find the stationary point of

V (s, 𝜋∗) = max
a

{
r(s, a) + 𝛽

∑
s′
p(s′|s, a, )𝑣(s′, 𝜋∗)

}
(4.17)

The solution to the above Bellman equation is guaranteed to be optimal.
Define the optimal Q-function as
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Q∗(s, a) = r(s, a) + 𝛽
∑
s′
p(s′|s, a)𝑣(s′, 𝜋∗) (4.18)

The term Q∗(s, a) is the total discounted reward for taking action a, in state s
and then following the optimal policy thereafter. By definition, we have

V (s, 𝜋∗) = max
a
Q∗(s, a) (4.19)

If we knowQ∗(s, a), then the problem can be solved simply by taking the action
thatmaximizesmaxaQ∗(s, a). TheQ-learning algorithm is a stochastic approx-
imation algorithm, given by

Qt+1(st, at) = (1 − 𝛼t)Qt(st, at) + 𝛼t(rt + 𝛽max
a
Qt(st+1, a)) (4.20)

Hu and Wellman [8] limit their work to stationary strategies and state the fol-
lowing theorem:

Theorem 4.1 Theorem 4 (Fink, 1964): Every n-player discounted stochastic
game possesses at least one Nash equilibrium point in stationary strategies.

The Q-learning algorithm is extended to multiagent games on the basis
of the framework of stochastic games. The Nash Q-value is the expected
sum of future discounted rewards when all agents follow Nash equilibrium
strategies from the next step onwards. This is different from the single-agent
case where the future rewards are based only on the agent’s own optimal
strategy.

Definition 4.1 (Hu and Wellman [8]) Agent i’s Nash Q-function is defined over
(s, a1, … , an) as the sum of agent i’s current reward plus its future rewards when
all agents follow a joint Nash equilibrium strategy. That is,

Qi(s, a1, … , an) = ri(s, a1, … , an) + 𝛽
∑
s′∈S

p(s′|s, a1, … , an)𝑣i(s′, 𝜋1, … , 𝜋n)

(4.21)
where (𝜋1, … , 𝜋n) is the joint Nash strategy, ri(s, a1, … , an) is agent i’s reward in
state s and under joint action (a1, … , an), and Vi(s′, 𝜋1, … , 𝜋n) is agent i’s total
discounted reward from s′ given the other agents follow their Nash equilibrium
strategy.

In the Nash Q-learning algorithm, the multiagent Q-learning algorithm
updates with future Nash equilibrium payoffs, whereas the single-agent
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Q-learning updates are based on the maximum A-values in the agent’s own
payoff table. To know the Nash equilibrium payoffs, the agent must also
know the reward received by the other agents. The agent must be able to
observe these rewards in some way. We define the difference between the Nash
equilibria for a stage game and for a stochastic game.

Definition 4.2 (Hu and Wellman [8]) An n-player stage game is defined as
(M1, … ,Mn), where for k = 1, … , n the term Mk is agent k’s payoff function
over the space of joint actions Mk = {rk(a1, … , an)|a1 ∈ A1, … , an ∈ An} and
rk is agent k’s payoff.

The Nash Q-learning algorithm executes as follows: initialize the Q-table
as Qi

0(s, a
1, … , an) = 0,∀s ∈ S, a1 ∈ A1, … , an ∈ An. At each time t, agent

i observes the current state and takes an action. Then the agent observes its
reward, the rewards received by the other agents, and the new state. The agent
then computes a Nash equilibrium at the new state for the stage or matrix
game, Q1

t (s′), … ,Qn
t (s′), and updates its Q-values as

Qi
t+1(s, a

1, … , an) = (1 − 𝛼t)Qi
t(s, a1, … , an) + 𝛼t[rit + 𝛽NashQi

t(s′)] (4.22)

The notation for all players or agents playing their Nash equilibrium strat-
egy is 𝜋1(s′), … , 𝜋n(s′), and the term Qi

t(s′, 𝜋1(s′), … , 𝜋n(s′)) is the Nash
equilibrium payoff for state s′. Therefore, for agents to determine the Nash
equilibrium, they each have to know the other agents’ Q-values. Thus agent
i must learn the Q-values for the other agents. For example, agent i may
initialize the Q-values for the other agents as Qj

0(s, a
1, … , an) = 0 for all j and

all s, a1, … , an. Agent i observes the other agents’ rewards and actions and
then updates the other agents’ Q-values. The update rule is the same as above,
that is

Qj
t+1(s, a

1, … , an) = (1 − 𝛼t)Q
j
t(s, a

1, … , an) + 𝛼t[rit + 𝛽NashQj
t(s

′)] (4.23)

Therefore, only the entry in the Q-table associated with the current state and
action is updated. Although the Nash Q-learning algorithm can be written
easily as in Algorithm 4.2, the algorithm is extremely complex. The user has
to maintain multiple Q-tables and then compute a Nash equilibrium that all
agents agree upon. One of the difficulties in implementing theNashQ-learning
algorithm is the computation of theNash equilibrium.Hu andWellman [8] use
the Lemke–Howson algorithm [12]. We will present a detailed description of
this algorithm in Section 4.6.Wewill present the examples of the following two
grid games that are also proposed in Reference 8 and used to evaluate several
other algorithms as well. The games are illustrated in Figs. 4-4 and 4-5.
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Fig. 4-5. (a) Nash equilibrium of grid game 1. (b) Nash equilibrium of grid game 2. Reproduced

from [8] with permission from MIT press.

The agents can move Up, Down Right and Left. If two agents move to the
same cell, then they bounce back unless it is the goal cell. The game ends when
an agent reaches the goal state. If both agents reach the goal state at the same
time, then both get rewarded with positive payoff. Agents do not initially know
their goals or their payoffs. The agents choose actions simultaneously. The
grid cells are defined as starting with cell state 0 at the bottom left corner and
incrementing from left to right until the top right hand corner which is cell
state 8. For example the bottom right hand corner is cell state 2. The action
space is Ai = {Left,Right,Down,Up} and a given state is given by s = (l1, l2)
where l1 and l2 represent the locations of the first and the second agents. If an
agent reaches its goal, then it gets a reward of 100. If the agents collide, both
agents bounce back to their original position and get a negative reward of −1,
and if the agent moves to an empty cell, it receives 0 reward.

In grid game 1, the state transitions are deterministic, and in grid game 2 the
transition through the barrier is 50%. For example, if agent 1 chooses action
Up, and agent 2 chooses actionLeft, from state (0, 2), we get the state transition
probabilities as

P((0, 1)|(0, 2),Up,Left) = 0.5
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and
P((3, 1)|(0, 2),Up,Left) = 0.5

Similarly, we have P((1, 2)|(0, 2),Right,Up) = 0.5 and P((1, 5)|(0, 2),Right,
Up) = 0.5. The Nash Q-learning algorithm assumes that the strategies are
stationary. A stationary strategy assigns probability distributions over an
agent’s actions based on the current state, regardless of the history. This
means that, if the agents are in the same state, then the action strategy would
be the same for all the agents.

Assuming we have pure strategies, such as in game 1, and the strategy is based
only on the location of the agents, then the strategies represent a path. The
notation (l1, any) refers to agent 1 being in state l1 and agent 2 being in any
state. Then we get a Nash equilibrium strategy as in Table 4.4. One of the
Nash equilibrium strategies is depicted in Fig. 4-5. The value of the game for
agent 1 is defined so that its accumulated reward when both agents follow their
Nash equilibrium is given as

𝑣1(s0) =
∑
t

𝛽tE(rt|𝜋1, 𝜋2, s0) (4.24)

In grid game 1 and initial state s0 = (0, 2), this becomes, given 𝛽 = 0.99

𝑣1(s0) = 0 + 0.99 × 0 + 0.99 ∗ 2 × 0 + 0.993 × 100 = 97 (4.25)

Based on the value for each state, we can derive the Nash Q-values for agent 1
in state s0 as

Q1(s0, a1, a2) = r1(s0, a1, a2) + 𝛽
∑
s′
p(s′|s0, a1, a2)𝑣1(s′) (4.26)

We will evaluate the Q-value for different actions for agent 1 in state (0, 2).
Let us start with the action (Right, Left). If we take the action (Right, Left),
then the two agents will bump into each other. This will give a penalty of
r1((0, 2),Right,Left) = −1. Therefore, theQ-value for taking the action (Right,

Table 4.4 States

and strategies.

State 𝜋1(s)
(0, 2) Up

(3, 5) Right

(4, 8) Right

(5, any) Up
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Left) in state (0, 2) and then following the optimal path afterwards, from state
(0, 2) (because the agents bounce back to state (0, 2)) is

Q1(s0,Right,Left) = −1 + 𝛽𝑣1((0, 2)) (4.27)

We have already computed that 𝑣1((0, 2)) = 97, and therefore

Q1(s0,Right,Left) = −1 + 0.99 × 97 = 95.1 (4.28)

But, for the Q-value for both agents going Up, we get

Q1(s0,Up,Up) = 0 + 0.99𝑣1(3, 5) = 97 (4.29)

The Nash Q-values for the agents when in state (0, 2) are given in Table 4.5.
For grid game 2, we can derive the NashQ-values. In this case, it is more com-
plicated because we do not have deterministic state transitions. Let us start the
agents in state (0, 1) as shown in Fig. 4-6. Then the optimal path for this posi-
tion is one in which agent 2 takes two steps Up and gets the reward. Agent 1
cannot get to the goal before agent 2. Therefore, the value for agent 1 is

𝑣1(0, 1) = 0 + 0.99 × 0 + 0.992 × 0 = 0 (4.30)

Table 4.5 Grid game 1: Nash

Q-values in state (0, 2).

Action Left Up
Right 95.1, 95.1 97, 97

Up 97, 97 97, 97

Goal state

Barrier Barrier

Agent 1 Agent 2

Fig. 4-6. Grid game with barriers, start position (0,1).
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However, if we start in state (1, 2), then agent 1 takes two steps Up and wins,
and the value for agent 1 is

𝑣1(1, 2) = 0 + 0.99 × 100 = 99 (4.31)

However, if we start in state (0, 2), thenwe can only compute the value in expec-
tation because if the agents choose the actionUp, there is only 50% probability
that they would go Up and a 50% probability that they stay in the same spot.
For starting in state (0, 2), we get the Q-value as

Q1((0, 2),Right,Left) = −1 + 0.99𝑣1((0, 2)) (4.32)

The next action isQ1((0, 2),Right,Up). In this case, there is only a 50% chance
that the agent goes Up. So we write out the Q1-value as

Q1(s0,Right,Up) = 0 + 0.99
(1
2
𝑣1(1, 2) + 1

2
𝑣1(1, 5)

)
(4.33)

If the agents take actions (Right, Up), then we may end up in the posi-
tion (1, 2) or (1, 5). Now, recall that if the agents are in state (1, 2), then
the optimal solution from there is to take two steps Up. Similarly, the
agent in state (1, 5) has the optimal solution of two steps, Up and Left.
Recall, the values of 𝑣1(1, 2) = 𝑣1(1, 5) = 0 + 0.99 × 100 = 99. Then we can
compute

Q1((0, 2),Right,Up) = 0 + 0.99
(1
2
(0.99) + 1

2
(0.99)

)
= 0.98 (4.34)

Now let us take the case of Q1((0, 2),Up,Left). In this case, there is only 50%
chance that agent 1 moves Up and 50% chance that the agent stays in the same
position. Then we can compute

Q1((0, 2),Up,Left) = 0 + 0.99
(1
2
𝑣1(0, 1) + 1

2
𝑣1(3, 1)

)
(4.35)

We already know that the value of 𝑣1 = 0; this is because agent 2 will take two
steps Up and win. If agent 1 gets through the barrier, then it is in position
(3, 1) and agent 1 then takes two steps, Up and Left, and wins at the same time
as agent 2 takes two steps, Up and Up, and wins. Therefore, we get 𝑣1(1, 3) =
0 + 0.99 × 100 = 0.99, and we can compute the optimal Q-value as

Q1((0, 2),Up,Left) = 0 + 0.99
(1
2
× 0 + 1

2
× 99

)
= 49 (4.36)
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Finally, we compute the value for Q1((0, 2)Up,Up). In this case, there are four
possible outcomes for the next state. Each agent has a 50% probability of mov-
ing Up, therefore there is 25% probability for both agents to move Up at the
same time. The probability of achieving state (3, 2) is 25%, state (3, 5) is 25%,
state (0, 2) is 25%, and state (0, 5) is 25%. So theQ-value forQ1((0, 2),Up,Up) is

Q1((0, 2),Up,Up) = 0 + 0.99
(1
4
𝑣1(3, 2) + 1

4
𝑣1(3, 5) + 1

4
𝑣1(0.2) + 1

4
𝑣1(0, 5)

)
(4.37)

We know the value of 𝑣1(3, 2) = 99, 𝑣1(3, 5) = 99, and 𝑣1(0, 5) = 0. Then,

Q1((0, 2),Up,Up) = 0 + 0.99
(1
4
𝑣1(0, 2) + 1

4
× 99 + 1

4
× 99 + 1

4
× 0

)
= 0.99 × 1

4
𝑣1(0, 2) + 24.5 + 24.5

= 0.99 × 1
4
𝑣1(0, 2) + 49

Now let us define R1 = 𝑣1(0, 2) to be agent 1’s optimal value by following
a Nash equilibrium strategy starting from state (0, 2). The obvious Nash
equilibrium for agent 1 of game 2 from the initial state (0, 2) is (Right, Up).
Given that (Right, Up) is the Nash equilibrium then, 𝑣1(0, 2) = 0.98. Then
we can derive the other values in the Q-table. On the other hand, the
obvious Nash equilibrium for the second agent is (Up, Left), but for agent
1 Q1((0, 2),Up,Left) = 49. Furthermore, there is also a mixed strategy of
({P(Right) = 0.97,P(Up) = 0.03}, {P(Left) = 0.97, and P(Up) = 0.03}). There
are three sets of possible Nash equilibria for grid game 2.

4.4.1 The Learning Process

Let us say that learning of agent 1 begins by initializing the Q-table as
Q1(s, a1, a2) = 0 for all s, a1, and a2. These are agent i’s internal beliefs, and
have nothing to do with the other agent. We start the game from the initial
state (0, 2). The agents then move simultaneously and observe the action
taken by the agents and the rewards that the agents receive. The agents then
update their Q-tables according to the following:

Qj
i+1(s, a

1, a2) = (1 − 𝛼t)Q
j
i(s, a

1, a2) + 𝛼t[r
j
t + 𝛾NashQj

t(s)] (4.38)

The process is repeated in the next state until the goal state is reached. Then a
new game starts and each agent is randomly assigned a new starting position
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except for the goal state. The training stops after 5000 episodes. Each episode
takes approximately eight steps. Therefore, one experiment takes 40,000 steps.
Furthermore, the learning rate is given by

𝛼t(s, a1, a2) =
1

𝜂t(s, a1, a2)
(4.39)

where 𝜂t(s, a1, a2) is the number of times the states and actions (s, a1, a2) have
been visited.

If we look at the algorithm, we see that we have to compute the Nash
equilibrium of the stage game with (Q1(s1) and Q2(s1)). There may be a
choice between multiple Nash equilibria. Hu and Wellman [8] use the
Lemke–Howson [12] algorithm to compute the Nash equilibrium for the
two-player game. The Lemke–Howson algorithm resembles the simplex
algorithm from linear programming.

4.5 The Simplex Algorithm

The simplex algorithm is a well-known algorithm for solving linear program-
ming problems. These are problems of maximizing a utility function or a cost
function subject to a number of linear constraints. The linear programming
model is as follows: Maximize

V =
n∑
j=1

cjxj (4.40)

subject to the set of constraints

n∑
j=1

aijxj ≤ bi i = 1, 2, … ,m and xj ≥ 0 (4.41)

The simplex algorithm searches for vertices of a polytope that defines the
accessible region of the solution space. One goes from vertex to vertex to find
the solution. The algorithm assumes nonnegativity. Inequalities are converted
into equalities by adding slack variables. Let us take the following example.
This example is taken from Design and Planning of Engineering Systems [13]
(Fig. 4-7). Maximize

V = 13x1 + 11x2 (4.42)
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Fig. 4-7. Constraint equations plotted for the simplex method.

subject to the constraints

4x1 + 5x2 ≤ 1500

5x1 + 3x2 ≤ 1575

x1 + 2x2 ≤ 420 (4.43)

and the nonnegativity constraint x1 ≥ 0 and x2 ≥ 0. For each one of the con-
straints, we add a slack variable x3, x4, or x5. We therefore convert the inequal-
ity constraints into equality constraints, as

4x1 + 5x2 + x3 = 1500

5x1 + 3x2 + x4 = 1575

x1 + 2x2 + x5 = 420 (4.44)

The slack variables represent how much room one has before one hits
the constraint. One initializes the system to start with the variables set
to x1 = 0 and x2 = 0. This gives the solution to the slack variables as
xT = [0, 0, 0, 1500, 1575, 420]. The nonzero variables are known as the vari-
ables in the basis. In this first step we have selected, the origin as the first
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vertex and the value of the reward or value function z is zero, z = 0. We now
have to move to the next extremal point. This is equivalent to moving one
variable out of the basis and moving another variable into the basis. The next
step is to determine which variable leaves the basis and which one enters the
basis. We put into the basis the variable that causes the greatest growth in
the payoff or reward function. Therefore, in this case we put x1 into the basis
because the payoff function will grow by 13 units for every unit of x1 whereas
it only grows by 11 units for every unit of x2. Then the first constraint is
reached when x1 = 1500∕4 = 375 and then x3 = 0. The second constraint
is reached when x1 = 1575∕5 = 315 and then x4 = 0. The final constraint is
reached when x1 = 420 and x5 = 0. Therefore, x1 hits constraint C first when
it is equal to 315. Then x1 enters the basis, and x4 = 0 leaves the basis. We then
write the variables in the basis in terms of only the variables not in the basis.
This is a form of Gaussian elimination. At the next vertex we get x1 = 315,
x2 = 0, and x4 = 0. We then write the system of equations as

z − 13x1 − 11x2 = 0 A

4x1 + 5x2 + x3 ≤ 1500 B

5x1 + 3x2 + x4 ≤ 1575 C

x1 + 2x2 + x5 ≤ 420 D (4.45)

Recall that it is the x4 slack variable that goes to 0. Therefore, we use Eq. C,
to solve for x1. Essentially, using Gaussian elimination we multiply Eq. C by
13∕5 and add Eq. C to Eq. A and get

z − 16∕5x2 + 13∕5x4 = 4095 A1

Then multiply Eq. C by −4∕5 and add to Eq. B and we get

13∕5x2 + x3 − 4∕5x4 = 240 B1

Similarly, divide Eq. C by 5 and we get

x1 + 3∕5x2 + 1∕5x4 = 315 C1

And, finally, multiply Eq. C by −1∕5 and add it to Eq. D and we get

7∕5x2 − 1∕5x4 + x5 = 105 D1
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We see from these equations that, if x2 increases, then so does the payoff func-
tion z. This is because the coefficient of x2 in Eq. A1 is negative. So, x2 will
enter the basis and either x3 or x5 will leave the basis. The slack variable x4
remains zero because we are moving along the edge defined by constraint C.
Along this edge, the slack variable is zero.

Therefore, when x3 and x4 are zero, x2 can grow to 5.24∕13 = 92.3; if x4 and
x5 are zero, then x2 can grow to 5105∕7 = 75; and if x1 and x4 are zero, then
x2 can grow to 5315∕3 = 525. The limiting case is when x5 is zero and x4 = 0.
This represents the intersection of the two constraints C and D. Then we use
Gaussian elimination again and write out the equations in terms of x4 and x5
only. Then we multiply Eq. D1 by 16∕5 × 5∕7 and add it to Eq. A1 and get

z + 15∕7x4 + 16∕7x5 = 4335 A2

We can longer increase z without violating a constraint condition. Similarly,
we remove x2 from Eq. B1 by multiplying Eq. D1 by −13∕5 × 5∕7 and add it
to Eq. B1. This gives

x3 − 3∕7x4 − 13∕7x5 = 45 B2

Similarly, for Eq. C1 we multiply Eq. D1 by −3∕5 × 5∕7 and add it to Eq. C1
and get

x1 + 10∕35x4 − 3∕7x5 = 270 C2

Finally, we multiply Eq. D1 by 5∕7 and get

x2 − 1∕7x4 + 5∕7x5 = 75 D2

To summarize, we can write the equations as

z + 15∕7x4 + 16∕7x5 = 4335 A2

x3 − 3∕7x4 − 13∕7x5 = 45 B2

x1 + 10∕35x4 − 3∕7x5 = 270 C2

x2 − 1∕7x4 + 5∕7x5 = 75 D2 (4.46)

Recall that the slack variables x4 and x5 are zero at the intersection of the
constraint equations C and D. Then the optimal value for the cost or pay-
off function is z = 4335 and x1 = 270 and x2 = 75 and the slack value of the
constraint given by Eq. B is x3 = 45.
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4.6 The Lemke–Howson Algorithm

This algorithm is applicable to the two-player game. Player 1 has m actions
and player 2 has n actions. We label the actions of player 1 asM = {1, … ,m}
and the actions of player 2 asN = {m + 1, … ,m + n}. The payoff for the play-
ers is given by the usual payoff matrix. We have two payoff matrices, matrix A
and matrix B for player 1 and player 2, respectively. If there is a mixed strat-
egy, given by the action profile (x, y), then the payoff for player 1 is xTAy and
the payoff for player 2 is xTBy. The support of a vector is defined as supp{⋅}
and represents the indices of elements of the vector that are nonzero. The term
x denotes all possible mixed strategies for agent 1, and y denotes all possible
mixed strategies for agent 2. We assume that A and B have all positive ele-
ments and that neither A nor B have all zero rows or columns. Let Bj denote
the column of B corresponding to action j, and let Ai denote the row of A
corresponding to action i. Define the two polytopes

P1 = {x ∈ Rm|(∀i ∈ M ∶ xi ≥ 0) (∀j ∈ N ∶ xTBj ≤ 1)} (4.47)

and

P2 = {y ∈ Rn|(∀j ∈ N ∶ yi ≥ 0) (∀i ∈ M ∶ Aiy ≤ 1)} (4.48)

The strategy is given by nrml(x) ∶= (
∑

ixi)−1x. The inequalities that define P1
have the following meaning:

• if x ∈ P1 meets xi ≥ 0 with equality, for example, xi = 0, then i is not in
the support of x;

• if x ∈ P1 meets xTBj ≤ 1 with equality, then j is the best response to
nrml(x).

The solution techniques to find the Nash equilibrium of general-sum games
are the Lemke–Howson algorithm and its extensions. For completeness, we
will present the Lemke–Howson algorithm. Furthermore, these algorithms are
based on methods from linear programming such as the simplex method. The
Lemke–Howson algorithm is the central algorithm of the Nash Q-learning
algorithm even though the seminal paper by Hu andWellman [8] only cite the
algorithm in passing.

The Lemke–Howson algorithm resembles the simplex algorithm. This algo-
rithm is used for two-player bimatrix games. The Nash Q-learning algorithm
uses this algorithm on each iteration to solve for the Nash equilibrium of the
two-player game. In particular, Hu andWellman [8] use this algorithm for their
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examples. Let player 1 have m actions given by the set M = {1, … ,m}, and
player 2 n actions given by the set N = {m + 1, … ,m + n}. We represent the
payoff matrix for the players as an m × n matrix. We define the payoff matrix
for player 1 with the matrix A and that for player 2 as the matrix B. We think
of player 1 as choosing actions that are represented by rows, and player 2 as
choosing the columns. We define an m-dimensional row vector x that repre-
sents the probabilities of player 1 choosing each of the possible actions. The ele-
ments of the row vector x will sum to 1. Similarly, we define an n-dimensional
column vector to represent the probabilities of player 2 choosing each action.
Therefore, x ∈ Rm is the mixed strategy for player 1, and y ∈ Rn is a column
vector representing the mixed strategy for player 2. The expected reward for
player 1 can then be written as

R1 = xTAy (4.49)

and the expected reward for player 2 can be written as

R2 = xTBy (4.50)

Similar to the simplex method, we define the support of any strategy as those
actions that do not have zero entries in x or y. We assume that matrix A has
no all-zero columns and that B has no all-zero rows and that the entries of A
and B are all nonnegative. Let Bj denote a column of b, and ai denote a row
of A. Then we define the two polytopes as follows:

P1 =
{
x ∈ Rm|(∀i ∈ M ∶ xi ≥ 0) (∀j ∈ N ∶ xTBj ≤ 1)

}
(4.51)

P2 =
{
y ∈ Rn|(∀j ∈ N ∶ yi ≥ 0) (∀i ∈ M ∶ Aiy ≤ 1)

}
(4.52)

The inequalities described in the polytopes defined above have the following
meanings: If xi = 0, then xi is not in the support or basis of x. Recall this
language from the description in the simplexmethod. The second equality con-
straint is xTBj = 1. This means that player 2’s action j is the best response to
strategy x of player 1. If the sum of the elements in column Bj is greater than
1, then the sum of the elements of x will be less than 1, and to get the strategy
we will need to normalize x as

nrml(x) ∶=

(∑
i

xi

)−1

x (4.53)

Let us define labels as follows: A strategy x ∈ P1 has label k ∈ M ∪N =
{1, 2, … ,m + n} if either k ∈ M and xk = 0 or k ∈ N and xTBk = 1. We then
can state the following theorem:
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Theorem 4.2 Suppose that x ∈ P1 and y ∈ P2 and neither x nor y is
the all-zero vector. Then, x and y together have all labels from 1 to k, iff
(nrml(x), nrml(y)) is a Nash equilibrium.

We give a simple example to illustrate how the Lemke–Howson algorithm is
implemented. Let us take the case of a two-player two-action game, where the
reward matrices have the following values:

A =
[
4 6
5 3

]
B =

[
3 2
1 4

]
(4.54)

The polytopes P1 and P2 are defined by the limits of the constraints Aiy ≤ 1
and BjTx ≤ 1, and both xi ≥ 0 and yj ≥ 0 as illustrated in Figs. 4-8 and 4-9.
Wewill convert these inequalities into equality constrains by adding slack vari-
ables as we did in the simplex method. Define the slack variable ri as

Aiy + ri = 1 (4.55)

Similarly
BjTx + sj = 1 (4.56)
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Fig. 4-8. Polytope defined by P1.
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Fig. 4-9. Polytope defined by P2.

Then, similar to the simplex method, we write ri = 1 − Aiy as

r1 = 1 − 4y3 − 6y4 A1

r2 = 1 − 5y3 − 3y4 A2

Similarly, the s constraint sj = 1 − BjTx becomes

s3 = 1 − 3x1 − x2 B1

s4 = 1 − 2x1 − 4x2 B2

We can now draw out the constraint conditions as illustrated in Fig. 4-8.
Taking the slack variables as being equal to zero, s1 = s2 = 0. The equality
constraints for the (x1, x2) polytope become

x2 = 1 − 3x1

x2 =
1
4
− 1

2
x1

Similarly, for the (y3, y4) polytope we have the constraints

y4 =
1
6
− 2

3
y3
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y4 =
1
3
− 5

3
y3

We will start by arbitrarily allowing x1 into the basis. Then the constraint B1
limits the growth of x1 to 1∕3, as seen in Figs. 4-8. Along the B1 constraint,
the slack variable s3 is zero. Then, from the complementary condition s3y3 = 0,
we bring y3 into the basis. From Eq. B1 we solve for x1 as

3x1 = 1 − x2 − s3

x1 =
1
3
− 1

3
x2 −

1
3
s3

where x2 = 0 and s3 = 0. Substituting for x1 into constraint Eq. B2, we get

s4 = 1 − 2
(1
3
− 1

3
x2 −

1
3
s3
)
− 4x2

s4 = 1 − 2
3
+ 2

3
x2 +

2
3
s3 − 4x2

s4 =
1
3
− 10

3
x2 +

2
3
s3 B2′

This is what just happened: we arbitrarily let agent 1 choose action 1 and found
that condition B1 was satisfied first when s3 = 0, at x1 =

1
3
and x2 = 0. This

means that the best response by agent 2 to agent 1 choosing action 1 is for agent
2 to take action 3, which represents the first column of the payoff function
given bymatrixB. This is obvious because, if agent 1 picks action 1, then agent
2 should pick action 3, which is the first column of the B matrix and then
agent 2 receives a reward of 3. If agent 2 chooses action 4, then its reward
would be only 2. Given that agent 1 chooses action 1, this means that agent
2 chooses action 3, and this is equivalent to having y3 enter the basis. The
limiting condition on y3 is given by the constraint A2. We then solve for y3
because of constraint A2 as

y3 =
1
5
− 3

5
y4 −

1
5
r2 where y4 = 0 and r2 = 0

We then compute r1 as

r1 = 1 − 4
(1
5
− 3

5
y4 −

1
5
r2
)
− 6y4

r1 =
1
5
− 18

5
y4 +

4
5
r2 A2′

Therefore, the best response to agent 2 taking action 3 is for agent 1 to take
action 2 because r2 = 0. We then pivot along the s3 = 0 line in the (x1, x2)
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polytope. We then add x2 to the basis because we have x2r2 = 0, and solve
for x2 from Eq. B2’ as

10
3
x2 =

1
3
+ 2

3
s3 − s4

x2 =
1
10

+ 1
5
s3 −

3
10
s4 where s3 = s4 = 0

x1 =
1
3
− 1

3

( 1
10

+ 1
5
s3 −

3
10
s4
)
− 1

3
s3

= 9
30

− 16
15
s3 +

1
16
s4

Then we choose to take y4 into the basis because s4 = 0, and it is clear that the
best response to agent 1 taking action 2 is for agent 2 to take action 4 and get
a reward of 4. We then solve for y4 from Eq. A2′ and get

18
5
y4 =

1
5
− r1 +

4
5
r2

y4 =
1
18

− 5
18
r1 +

4
18
r2 A′′

Then r1 = 0, and x1 would enter the basis, but it is already in the basis so the
algorithm ends. We now normalize the game strategy. The current solution
is given by x1 =

9
30

= 3
10
, x2 =

1
10
, y3 =

1
6
, and y4 =

1
18
. We then normalize the

strategy as

x10 =

3
10

3
10

+ 1
10

= 3
4

and x20 =

1
10

3
10

+ 1
10

= 1
4

y30 =

3
18

3
18

+ 1
18

= 3
4

and y40 =

1
18

3
18

+ 1
18

= 1
4

Now let us check if this works. Given that x0 = [ 3
4
,
1
4
]T and y0 = [ 3

4
,
1
4
]T , the

payoff to agent 1 is

R1 = xT0 Ay0

=
⎡⎢⎢⎢⎣
3
4
1
4

⎤⎥⎥⎥⎦
[
4 6
5 3

] ⎡⎢⎢⎢⎣
3
4
1
4

⎤⎥⎥⎥⎦ = 4.5
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We can also write this in the form before normalization, in which case we get
the constraint condition as

Ay∗ =
[
4 6
5 3

] ⎡⎢⎢⎢⎣
1
6
1
18

⎤⎥⎥⎥⎦ =
[
1
1

]

which satisfies the constraint condition. We can also check the payoff for
agent 2.

R2 = xT0 By0

=
⎡⎢⎢⎢⎣
3
4
1
4

⎤⎥⎥⎥⎦
[
3 2

1 4

] ⎡⎢⎢⎢⎣
3
4
1
4

⎤⎥⎥⎥⎦ = 2.5

and once again we can verify the constraint conditions as

BTx∗ =
[
3 1
2 4

] ⎡⎢⎢⎢⎣
3
10
1
10

⎤⎥⎥⎥⎦ =
[
1
1

]

Recall the conditions xT0 Ay0 ≥ xTAy0 and xT0 By0 ≥ xT0 By. This says that if
agent 2 plays its best policy, and if agent 1 plays any policy, it does no bet-
ter than the optimal policy x0, and similarly for agent 2. Therefore, we now
show that we cannot find any x that will make R1 greater than the optimal
policy selection. We know that the optimal payoff for agent 1 is given by R∗

1 =
xT0 Ay0 = 4.5. Can we find a policy x ≠ x0 such that R1 = xTAy0 > 4.5? We
have

R1 =
[
x1
x2

] [
4 6
5 3

] ⎡⎢⎢⎢⎣
3
4
1
4

⎤⎥⎥⎥⎦
=
[
x1
x2

]T [
4.5
4.5

]
∀ x1 and

x2 s.t. x1 + x2 = 1 (4.57)
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Similarly, for agent 2 we have R2 = xT0 By0 ≥ xT0 By, but we know that xT0 B =
[2.5, 2.5] and that xTB = [1, 1]. Therefore, if agent 2 picks its optimal policy y0,
then agent 1 will always get the payoff 4.5, regardless of what strategy it uses;
similarly, if agent 1 picks its optimal strategy x0, then agent 2 gets its optimal
payoff off 2.5 regardless of what strategy it picks. We now see the importance
of setting the constraint conditions for agent 1 to ensure that BTx = 1 and
for agent 2 Ay = 1. Then for condition BTx = 1, this means that the payoff to
agent 2 is limited by the strategy of agent 1, and similarly the conditionAy = 1
means that the payoff to agent 1 is limited by the strategy of agent 2, yielding
the maximum payoff for each constrained by the other.

4.7 Nash-Q Implementation

Our goal with the Nash-Q algorithm is to reproduce the results obtained by
Hu and Wellman. The results were very conclusive in grid games 1 and 2. We
wanted to recreate the situation when both agents were Nash-Q learners. Hu
and Wellman’s observations showed that both agents learned a Nash equilib-
rium strategy 100% of the time. The high percentage is a very good indicator
that the algorithm works very well in that particular situation.

The Lemke–Howson algorithm was used to find the Nash equilibrium of
bimatrix games. We used the original version from Hu and Wellman and
adapted it for our environment in MATLAB. The algorithm is designed to
find more than one Nash equilibrium when they exist. It is based on the work
from Reference 14. The inputs are the two payoff matrices for both players,
and the outputs are the Nash equilibria. In our multiple implementations, we
kept the parameters from Reference 8. The author had their agents play for
5000 games. The number of games necessary to reach convergence is affected
by the variation of the learning rate 𝛼. Where 𝛼 is inversely proportional to
the number of times each state tuples (s, a1, a2) are visited. We considered
5000 a reasonable number of games because after some testing we calculated
that each state would be visited on average 93 times.

We started the implementation with a more general approach to the learning
technique than in Reference 8. In our first implementation, our agents were
always able to choose any of the four actions. This meant that if the agent
chooses to go into a wall, it would be bounced back and would receive either
a negative reward or no reward. Also, our Lemke–Howson algorithm would
use the Nash Q-values of all four actions for each state. It meant that the
algorithm was calculating more than it needed. The results obtained were
not conclusive. In our second implementation, we changed the code so that
the agents would not be able to choose an action that would lead out of
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Table 4.6 Grid game 1.

Nash Q-values in state

(1,3).

Up Left

Up 96,95 92,92

Right 85,85 89,85

bounds. The fact that Nash-Q is an offline learner helped us to create the
boundaries when choosing randomly the next step. This change positively
affected the results, and we got a success rate of about 25%. This was still
far from the success rate noted in the literature. In our last implementation,
the Lemke–Howson algorithm was used only on the possible actions. This
means that the agent would calculate the Nash equilibrium strategy of the
next state with only the actions that are allowed in that state. We were able to
achieve 100% success in getting a Nash equilibrium strategy for two Nash-Q
learners. Table 4.6 shows the value of the Nash Q-values in the starting
state (1,3).

We decided to use the same method of Hu and Wellman to confirm their
results. This means that the agent will choose a random action in every
state. The starting positions of the players change in every game. They
start in a random position except for their goal cell. This ensures that
each state is visited often enough. According to Reference 8, the learning
rate depends on the number of times each state-action tuple has been
visited. The value of 𝛼 is 𝛼(s, a1, a2) = 1

nt(s,a1,a2)
, where nt is the number of

times the game was in the state-action tuple (s, a1, a2) [8]. This allows the
learning rate to decay until the state-action tuple is visited often enough.
We found that if we remove the states where both players occupied the
same cell, the states where one or both of the players are in their goal
cell, and the inaccessible actions (the players cannot try to move into the
wall), we would get 424 different state-action tuples of the form (s, a1, a2)
[8]. The learning rate would be negligible after 500 visits with a value
of 𝛼 = 0.002.

We also implemented an online version of the algorithm. In this version, the
agents start each episode from the state s(1, 3), which is the original starting
position. The main difference is that the agent now uses an exploit-explore
learning technique where the agent choose a random action with a probability
of 1 − 𝜀 and theNash equilibrium strategy with a probability of 𝜀. The value of
𝜀 varies during learning as 𝜀(s) = 1

nt(s)
, where nt is the number of times the game
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was in the state s [8]. This means that the chance that the agent will choose a
random action increases with time. This is not desirable for an online learning
agent, because it would cause the average reward to decrease with time. It is
necessary for the Nash-Q agent to visit as many different states as possible to
ensure convergence to a Nash equilibrium strategy.

Our final results correspond perfectly with those in the literature when look-
ing at two Nash-Q learners playing grid games 1 and 2. We tested each grid
game 20 times, and the agents found the Nash equilibrium strategy 100% of
the time. We also kept track of the performance of each agent. The perfor-
mance was calculated by the average reward per step the agent was able to
accumulate. The performance of an agent is important because it tells us how
well the agent can optimize their policy. To ensure that the values reflect not
only the results of one game, we took the average of the value over five games.
It also gave us a smoother curve on the graphs which made it easier to read. In
Figs. 4-10–4-12, we illustrate the performance of the algorithm in grid game 1
when both agents are Nash-Q learners. It shows the average rewards per step
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Fig. 4-10. Nash-Q learner with exploit-explore. Reproduced from [15], © P. De Beck-Courcelle.
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Fig. 4-11. Nash-Q learner with explore only. Reproduced from [15], © P. De Beck-Courcelle.
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when the two agents use the three learning technique: exploit-explore, explore
only, and exploit only.

The Nash-Q algorithm converges to a Nash equilibrium strategy only when all
the assumptions and conditions aremet. The algorithm is also very demanding
on computation time. Its needs to keep track of all the players’ actions and
rewards in a separateQ-table. It also needs to evaluate the Nash equilibrium at
every step to update itsQ-values. The Lemke–Howson algorithm is equivalent
to the simplex algorithm in terms of computation. Both these actions require
a large amount of processing power and consume a lot of time.

4.8 Friend-or-Foe Q-Learning

For a two-player zero-sum stochastic game, the minimax-Q algorithm [1]
is well suited for the players to learn a Nash equilibrium in the game. For
general-sum stochastic games, Littman proposed a friend-or-foe Q-learning
(FFQ) algorithm such that a learner is told to treat the other players as either
a “friend” or a “foe” [10]. The FFQ algorithm assumes that the players in a
general-sum stochastic game can be grouped into two types: player i’s friends
and player i’s foes. Player i’s friends are assumed to work together to maximize
player i’s value, while player i’s foes work together to minimize the value [10].
Thus, an n-player general-sum stochastic game can be treated as a two-player
zero-sum game with an extended action set [10].

The FFQ algorithm for player i is given in Algorithm 4.3. Note that the FFQ
algorithm is different from the minimax-Q algorithm for a two-team zero-sum
stochastic game. In a two-team zero-sum stochastic game, a team leader
controls the team players’ actions and maintains the value of the state for the
whole team. The received reward is also the whole team’s reward. For the FFQ
algorithm, there is no team leader to send commands to control the team
players’ actions. The FFQ player chooses its own action and maintains its
own state-value function and equilibrium strategy. In order to update the
action-value function Qi(s, a1, … , an1 , o1, … , on2), the FFQ player needs to
observe its friends and opponents’ actions at each time step.

Littman’s FFQ algorithm can guarantee the convergence to a Nash equi-
librium if all states and actions are visited infinitely often. The proof of
convergence for the FFQ algorithm can be found in Reference 10. Similar
to the minimax Q- and Nash Q-learning algorithms, the learning speed is
low because of the execution of linear programming at each iteration in
Algorithm 4.3.
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Algorithm 4.3 Friend-or-foe Q-learning algorithm

Initialize Vi(s) = 0 and Qi(s, a1,… , an1 , o1,… , on2) = 0 where (a1,… , an1)
denotes player i and its friends’ actions and (o1,… , on2) denotes its
opponents’ actions.
for Each iteration do
Player i takes an action ai from current state s based on an
exploration-exploitation strategy.
At the subsequent state s′, player i observes the received reward ri, its
friends’ and opponents’ actions taken at state s.
Update Qi(s, a1,… , an1 , o1,… , on2):

Qi(s, a1,… , an1 , o1,… , on2) ← (1 − 𝛼)Qi(s, a1,… , an1 , o1,… , on2)

+ 𝛼
[
ri + 𝛾Vi(s′)

]
where 𝛼 is the learning rate and 𝛾 is the discount factor.
Update Vi(s) using linear programming:

Vi(s) = max
𝜋1(s,⋅),…, 𝜋n1

(s,⋅)
min

o1,…, on2∈O1× ··· ×On2

∑
a1,…, an1∈A1× ··· ×An1

Qi(s, a1,… , an1 , o1,… , on2)𝜋1(s, a1) · · ·𝜋n1(s, an1) (4.58)

end for

4.9 Infinite Gradient Ascent

It is known in the game theory literature that the strategies need not converge
when they are computed by the gradient ascent in two-person iterated games.
Singh et al. proved that the average payoffs of two players will always converge
to the expected payoffs of some Nash equilibrium even if their strategies do
not converge. Let a two-player two-action general-sum game be defined by the
following matrices:

R =
[
r11 r12
r21 r22

]
and C =

[
c11 c12
c21 c22

]
where R is the payoffs of the row player (player 1) and C is the payoffs of the
column player (player 2). Assume that player 1 plays action i and player 2
plays action j. Thus, the payoffs that player 1 and player 2 get are Rij and Cij,
respectively.
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Player 1 and player 2 are said to follow a mixed strategy as they can choose
their actions stochastically. Let us assume that 𝛼 ∈ [0,1] is the probability of
player 1 to choose action 1 and (1 − 𝛼) is the probability of player 1 to choose
action 2. Let us also assume that 𝛽 ∈ [0,1] is the probability of player 2 to
choose action 1 and (1 − 𝛽) is the probability of player 2 to choose action 2.
Thus, player 1’s expected payoff to the strategy pair (𝛼, 𝛽) is

Vr(𝛼, 𝛽) = r11(𝛼𝛽) + r22((1 − 𝛼)(1 − 𝛽)) + r12(𝛼(1 − 𝛽)) + r21((1 − 𝛼)𝛽) (4.59)

and player 2’s expected payoff to the strategy pair (𝛼, 𝛽) is

Vc(𝛼, 𝛽) = c11(𝛼𝛽) + c22((1 − 𝛼)(1 − 𝛽)) + c12(𝛼(1 − 𝛽)) + c21((1 − 𝛼)𝛽) (4.60)

The effect of changing a player’s strategy is estimated by calculating the partial
derivative of its expected payoff with respect to its mixed strategy as follows:

𝜕Vr(𝛼, 𝛽)
𝜕𝛼

= 𝛽u − (r22 − r12) (4.61)

𝜕Vc(𝛼, 𝛽)
𝜕𝛽

= 𝛼ú − (c22 − c21) (4.62)

where u = (r11 + r22) − (r21 + r12) and ú = (c11 + c22) − (c21 + c12).

In the gradient ascent algorithm, at each time step the current strategy of each
player is adjusted in the direction of its current gradient with some step size 𝜂
so as to maximize its expected payoff:

𝛼k+1 = 𝛼k + 𝜂
𝜕Vr(𝛼k, 𝛽k)

𝜕𝛼
(4.63)

𝛽k+1 = 𝛽k + 𝜂
𝜕Vc(𝛼k, 𝛽k)

𝜕𝛽
(4.64)

The step size 𝜂 is usually in the range 0 < 𝜂 ≪ 1. It is clear that each player
assumes that the opponent’s strategy is known. Singh et al. proved that the
agents, their average payoffs, or both of them will converge to a Nash equilib-
rium in case of the infinitesimal step size (lim𝜂→0). However, the IGA (infinite
gradient ascent) algorithm is not practical because it cannot be applied to a
large number of real problems because of the following two reasons:

1. The opponent’s strategy is assumed to be totally known by the player;
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2. The IGA algorithm is designed for two-player two-action iterated
general-sum games; for many-player many-action general-sum games,
the extension will not be straightforward.

4.10 Policy Hill Climbing

Policy hill climbing (PHC) is a simple practical algorithm that can play mixed
strategies. This algorithm was first proposed by Bowling and Veloso (2002).
The PHC does not require much information as neither the player’s recently
executed actions nor its opponent’s current strategy is required to be known.
The PHC is a simple modification of the single-agent Q-learning algorithm.
A hill climbing is performed by the PHC algorithm in the space of the mixed
strategies. The PHC algorithm is composed of two parts. The reinforcement
learning is the first part, as the Q-learning algorithm maintains the values of
the particular actions in the states. The game-theoretic part is the second part
in which the current strategy in each system’s state is maintained.

The probability that selects the highest valued actions is increased by a small
learning rate 𝛿 ∈ (0,1] so that the policy is improved. The algorithm is equiv-
alent to Q-learning when 𝛿 = 1, as the policy moves to the greedy policy with
probability 1 while executing the highest valued action. The PHC algorithm is
rational and converges to the optimal solution when a fixed (stationary) strat-
egy is followed by the other players. However, the PHC algorithm may not
converge to a stationary policy if the other players are learning although its
average reward will converge to the reward of a Nash equilibrium. The PHC
algorithm is illustrated in Algorithm 4.4.

4.11 WoLF-PHC Algorithm

Algorithm 4.4 Policy hill climbing algorithm

1: Initialize Qi(s, ai) ← 0 and 𝜋i(s, ai) ←
1|Ai| .Choose the learning rate 𝛼, 𝛿

and the discount factor 𝛾.
2: for Each iteration do
3: Select action ac from current state s based on a mixed

exploration-exploitation strategy
4: Take action ac and observe the reward ri and the subsequent state s′

5: Update Qi(s, ac)

Qi(s, ac) = Qi(s, ac) + 𝛼
[
ri + 𝛾 max

a′i
Q(s′, a′i) −Q(s, ac)

]
(4.65)

where a′i is player i’s action at the next state s′ and ac is the action player
i has taken at state s.
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6: Update 𝜋i(s, ai)

𝜋i(s, ai) = 𝜋i(s, ai) + Δsai (∀ai ∈ Ai) (4.66)

where

Δsai =
⎧⎪⎨⎪⎩
−𝛿sai if ac ≠ argmaxai∈Ai

Qi(s, ai)∑
aj≠ai

𝛿saj otherwise
(4.67)

𝛿sai =min
(
𝜋i(s, ai),

𝛿|Ai| − 1

)
(4.68)

7: end for

TheWoLF-PHC (win-or-learn-fast policy hill climbing) algorithm is an exten-
sion of the PHC algorithm [2]. This algorithm uses the mechanism of WoLF
so that the PHC algorithm converges to a Nash equilibrium in self-play. The
algorithm has two different learning rates: 𝛿𝑤 when the algorithm is winning,
and 𝛿l when it is losing. The difference between the average strategy and the
current strategy is used as a criterion to decide when the algorithm wins or
loses. The learning rate 𝛿l is larger than the learning rate 𝛿𝑤. As such, when an
agent is losing, it learns faster than when it is winning. This causes the agent
to adapt quickly to the changes in the strategies of the other agents when it
is doing more poorly than expected, and learns cautiously when it is doing
better than expected. This also gives the other agents the time to adapt to the
agent’s strategy changes. The WoLF-PHC algorithm exhibits the property of
convergence as it makes the agent converge to one of its Nash equilibria. This
algorithm is also a rational learning algorithm as it makes the agent converge
to its optimal strategy when its opponent plays a stationary strategy. These
properties permit the WoLF-PHC algorithm to be widely applied to a variety
of stochastic games [2, 16–18]. The recursive Q-learning of a learning agent j
is given as

Qj
t+1(s, a) = (1 − 𝛼)Qj

t(s, a) + 𝛼(rj + 𝛾 max
a′

Qj
t(s

′, a′)) (4.69)

Algorithm 4.5 describes the WoLF-PHC algorithm for a learning agent j, and
the algorithm updates the strategy of agent j by the following equation:

𝜋
j
t+1(s, a) = 𝜋

j
t(s, a) + Δsa (4.70)
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where

Δsa =

{
−𝛿sa if a ≠ arg maxa′Q

j
t(s, a′)∑

a′≠a𝛿sa′ otherwise

𝛿sa = min
(
𝜋
j
t(s, a),

𝛿|Aj| − 1

)
𝛿 =

{
𝛿𝑤 if

∑
a′𝜋t(s, a′)Q

j
t+1(s, a

′) >
∑

a′ 𝜋̄t+1(s, a′)Q
j
t+1(s, a

′)

𝛿l otherwise

𝜋̄
j
t+1(s, a

′) = 𝜋̄
j
t(s, a

′) + 1
Ct+1(s)

(𝜋jt(s, a
′) − 𝜋̄

j
t(s, a

′)) ∀a′ ∈ Aj

Ct+1(s) = Ct(s) + 1.

The WoLF-PHC algorithm for player i is provided in Algorithm 4.5.

Algorithm 4.5 WoLF-PHC learning algorithm

Initialize Qi(s, ai) ← 0, 𝜋i(s, ai) ←
1|Ai| and C(s) ← 0.Choose the learning

rate 𝛼, 𝛿 and the discount factor 𝛾
for Each iteration do
Select action ac from current state s based on a mixed
exploration-exploitation strategy
Take action ac and observe the reward ri and the subsequent state s′

Update Qi(s, ac)

Qi(s, ac) = Qi(s, ac) + 𝛼
[
ri + 𝛾 max

a′i
Q(s′, a′i) −Q(s, ac)

]
(4.71)

where a′i is player i’s action at the next state s′ and ac is the action player i
has taken at state s.
Update the estimate of average strategy 𝜋̄i

C(s) =C(s) + 1 (4.72)

𝜋̄i(s, ai) = 𝜋̄i(s, ai) +
1

C(s)
(
𝜋i(s, ai) − 𝜋̄i(s, ai)

)
(∀ai ∈ Ai) (4.73)

where C(s) denotes how many times the state s has been visited.
Update 𝜋i(s, ai)

𝜋i(s, ai) = 𝜋i(s, ai) + Δsai (∀ai ∈ Ai) (4.74)
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where

Δsai =
⎧⎪⎨⎪⎩
−𝛿sai if ac ≠ argmaxai∈Ai

Qi(s, ai)∑
aj≠ai

𝛿saj otherwise
(4.75)

𝛿sai =min
(
𝜋i(s, ai),

𝛿|Ai| − 1

)
(4.76)

𝛿 =

{
𝛿𝑤 if

∑
ai∈Ai

𝜋i(s, ai)Qi(s, ai)>
∑

ai∈Ai
𝜋̄i(s, ai)Qi(s, ai)

𝛿l otherwise

end for

Different from the previously mentioned learning algorithms, theWoLF-PHC
algorithm does not need to observe the other players’ strategies and actions.
Therefore, compared to the other three learning algorithms, the WoLF-PHC
algorithm needs less information from the environment. Since theWoLF-PHC
algorithm is based on the PHC method, neither linear programming nor
quadratic programming is required in this algorithm. Since the WoLF-PHC
algorithm is a practical algorithm, there was no proof of convergence pro-
vided in Reference 2. Instead, simulation results in Reference 2 illustrated
the convergence of players’ strategies by carefully choosing the learning rate
according to different examples in matrix games and stochastic games.

4.12 Guarding a Territory Problem in a Grid World

The game of guarding a territorywas first introduced by Isaacs [3]. In the game,
the invader tries to move to the territory as close as possible while the defender
tries to intercept and keep the invader away from the territory as far as possible.
The practical application of this game can be found in surveillance and security
missions for autonomous mobile robots. There are a few published works in
this field since the game was introduced [19, 20]. In these works, the defender
tries to use a fuzzy controller to locate the invader’s position [19] or applies a
fuzzy reasoning strategy to capture the invader [20]. However, all these works
assume that the defender knows its optimal policy and the invader’s policy.
There is no learning technique applied to the players in their works. In our
work, we assume that the defender or the invader has no prior knowledge of
his optimal policy and the opponent’s policy. We apply learning algorithms to
the players and let the defender or the invader obtain its own optimal behavior
after learning.
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The problem of guarding a territory in Reference 3 is a differential game
problem where the dynamic equations of the players are typically differential
equations. In our work, we will investigate how the players learn to behave
with no knowledge of the optimal strategies. Therefore, the above problem
becomes a multiagent learning problem in a multiagent system. In the litera-
ture, there are a number of papers on multiagent systems [21, 22]. Among the
multiagent learning applications, the predator–prey or the pursuit problem in
a grid world has been well studied [22, 23]. To better understand the learning
process of the two players in the game, we create a grid game of guarding a
territory, which has not been studied so far.

Most multiagent learning algorithms are based on MARL methods [22].
According to the definition of the game in Reference 3, the grid game
we established is a two-player zero-sum stochastic game. The minimax-Q
algorithm [1] is well suited to solve our problem. However, if the player
does not always take the action that is most damaging to the opponent, the
opponent might have better performance using a rational learning algorithm
than the minimax-Q [21]. The rational learning algorithm we use here is
the WoLF-PHC learning algorithm. In this section, we run simulations
and compare the learning performance of the minimax-Q and WoLF-PHC
algorithms.

The problem of guarding a territory in this section is the grid version of the
guarding a territory game in Reference 3. The game is defined as follows:

• We take a 6 × 6 grid as the playing field, as shown inFig. 4-13. The invader
starts from the upper-left corner and tries to reach the territory before
the capture. The territory is represented by a cell named T in Fig. 4-13.
The defender starts from the bottom and tries to intercept the invader.
The initial positions of the players are not fixed and can be chosen
randomly.

• Both players can move up, down, left, or right. At each time step, both
players take their actions simultaneously andmove to their adjacent cells.
If the chosen action will take the player off the playing field, the player
will stay at the current position.

• The nine gray cells centered around the defender, shown in Fig. 4-13b, is
the regionwhere the invader will be captured. A successful invasion by the
invader is defined as the situation where the invader reaches the territory
before the capture or the capture happens at the territory. The game ends
when the defender captures the invader or a successful invasion by the



Learning in Multiplayer Stochastic Games 119

(a) (b)

Fig. 4-13. Guarding a territory in a grid world. (a) Initial positions of the players when the game

starts. (b) Terminal positions of the players when the game ends. Reproduced from [5], © X. Lu.

invader happens. Then the game restarts with random initial positions of
the players.

• The goal of the invader is to reach the territory without interception, or
move to the territory as close as possible if the capture must happen. On
the contrary, the aim of the defender is to intercept the invader at a loca-
tion as far away as possible from the territory.

The terminal time is defined as the time when the invader reaches the territory
or is intercepted by the defender. We define the payoff as the distance between
the invader and the territory at the terminal time.

Payoff = |xI (tf ) − xT | + |yI (tf ) − yT | (4.77)

where (xI (tf ), yI (tf )) is the invader’s position at the terminal time tf and (xT , yT )
is the territory’s position. Based on the definition of the game, the invader tries
to minimize the payoff while the defender tries to maximize the payoff.

4.12.1 Simulation and Results

We use the minimax-Q andWoLF-PHC algorithms introduced in Sections 4.3
and 4.11 to simulate the grid game of guarding a territory. We first present a
simple 2 × 2 grid game to explore the issues of mixed strategy, rationality, and
convergence. Next, we enlarge the playing field to a 6 × 6 grid and examine the
performance of the learning algorithms based on this large grid.

We set up two simulations for each grid game. In the first simulation, the
players in the game use the same learning algorithm to play against each
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Table 4.7 Comparison of multiagent reinforcement learning algorithms.

Algorithms Applicability Rationality Convergence

Minimax-Q Zero-sum SGs No Yes

Nash-Q learning Specific general-sum SGs No Yes

Friend-or-foe Q learning Specific general-sum SGs No Yes

WoLF-PHC General-sum SGs Yes No
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Fig. 4-14. Players’ strategies at state s1 using the minimax-Q algorithm in the first simulation

for the 2 × 2 grid game. (a) Defender’s strategy 𝝅D(s1,aleft) (solid line) and 𝝅D(s1,aup) (dash line).

(b) Invader’s strategy 𝝅I(s1,odown) (solid line) and 𝝅I(s1,oright) (dash line). Reproduced from [5],

© X. Lu.

other. We examine whether the algorithm satisfies the convergence property
Fig. 4-14. In the second simulation, we will freeze one player’s strategy and
let the other player learn the optimal strategy against its opponent. We use
the minimax-Q and WoLF-PHC algorithms to train the learner individually
and compare the performance of the minimax-Q-trained player and the
WoLF-PHC-trained player. According to the rationality property shown in
Table 4.7, we expect the WoLF-PHC-trained defender has better performance
than the minimax-Q-trained defender in the second simulation.
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Fig. 4-15. Players’ strategies at state s1 using the WoLF-PHC algorithm in the first simulation

for the 2 × 2 grid game. (a) Defender’s strategy 𝝅D(s1,aleft) (solid line) and 𝝅D(s1,aup) (dash line).

(b) Invader’s strategy 𝝅I(s1,odown) (solid line) and 𝝅I(s1,oright) (dash line). Reproduced from [5],

© X. Lu.

We now apply the WoLF-PHC algorithm to the 2 × 2 grid game. Accord-
ing to the parameter settings in Reference 2, we set the learning rate 𝛼 as
1∕(10 + t∕10000), 𝛿𝑤 as 1∕(10 + t∕2), and 𝛿l as 3∕(10 + t∕2), where t is the
number of the current iteration. The number of iterations denotes the num-
ber of times the step 2 is repeated in Algorithm 4.5. The result in Fig. 4-15
shows that the players’ strategies converge close to the Nash equilibrium after
15,000 iterations.

In the second simulation, the invader plays a stationary strategy against the
defender at state s1, as shown in Fig. 4-2a. The invader’s fixed strategy is to
move right with probability 0.8 and move down with probability 0.2. Then
the optimal strategy for the defender against this invader is to move up all the
time. We apply both algorithms to the game and examine the learning perfor-
mance for the defender. Figure 4-16a shows that, using the minimax-Q algo-
rithm, the defender’s strategy fails to converge to its optimal strategy, whereas
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Fig. 4-16. Defender’s strategy at state s1 in the second simulation for the 2 × 2 grid game.

(a) Minimax-Q-learned strategy of the defender at state s1 against the invader using a fixed strat-

egy. Solid line: probability of defender moving up; Dashed line: probability of defender moving

left. (b) WoLF-PHC learned strategy of the defender at state s1 against the invader using a fixed

strategy. Solid line: probability of defender moving up; Dashed line: probability of defender

moving left. Reproduced from [5], © X. Lu.

Fig. 4-16b shows that the WoLF-PHC algorithm guarantees the convergence
to the defender’s optimal strategy against the invader.

In the 2 × 2 grid game, the first simulation verified the convergence property of
the minimax-Q and WoLF-PHC algorithms. According to Table 4.7, there is
no proof of convergence for the WoLF-PHC algorithm. But simulation result
in Fig. 4-15 shows that the players’ strategies converged to the Nash equilib-
rium when both players used the WoLF-PHC algorithm. Under the rational-
ity criterion, the minimax-Q algorithm failed to converge to the defender’s
optimal strategy in Fig. 4-16a, while the WoLF-PHC algorithm showed the
convergence to the defender’s optimal strategy after learning.
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Fig. 4-17. A 6 × 6 grid game. (a) Initial positions of the players. (b) One of the terminal

positions of the players. Reproduced from [5], © X. Lu.

We now change the 2 × 2 grid game to a 6 × 6 grid game. The territory to be
guarded is represented by a cell located at (5, 5) in Fig. 4-17. The position
of the territory will not be changed during the simulation. The initial posi-
tions of the invader and defender are shown in Fig. 4-17a. The number of
actions for each player has been changed from 2 in the 2 × 2 grid game to 4
in the 6 × 6 grid game. Both players can move up, down, left, or right. The
gray cells in Fig. 4-17a is the area where the defender can reach before the
invader. Therefore, if both players play their equilibrium strategies, the invader
can move to the territory as close as possible with the distance of two cells
shown in Fig. 4-17b. Different from the previous 2 × 2 grid game where we
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showed the convergence of the players’ strategies during the learning, in this
game we want to show the average leaning performance of the players during
the learning. We add a testing phase to evaluate the learned strategies after
every 100 iterations. The number of iterations denotes the number of times
step 2 is repeated in Algorithms 4.1 or 4.5. A testing phase includes 1000 runs
of the game. In each run, the learned players start from their initial positions
shown in Fig. 4-17a and end at the terminal time. For each run, we find the final
distance between the invader and the territory at the terminal time. Then we
calculate the average of the final distance over 1000 runs. The result of a testing
phase, which is the average final distance over 1000 runs, is collected after every
100 iterations.

We use the same parameter settings as in the 2 × 2 grid game for theminimax-Q
algorithm. In the first simulation, we test the convergence property by using
the same learning algorithm for both players. Figure 4-18a shows the learning
performance when both players used the minimax-Q algorithm. In Fig. 4-18a,
the x-axis denotes the number of iterations and the y-axis denotes the result of
the testing phase (the average of the final distance over 1000 runs) for every 100
iterations. From the result in Fig. 4-18a, the average final distance between the
invader and the territory converges to 2 after 50,000 iterations. As shown in
Fig. 4-17b, distance 2 is the final distance between the invader and the ter-
ritory when both players play their Nash equilibrium strategies. Therefore,
Fig. 4-18a indicates that both players’ learned strategies converge close to their
Nash equilibrium strategies. Then we use the WoLF-PHC algorithm to sim-
ulate again. We set the learning rate 𝛼 as 1∕(4 + t∕50), 𝛿𝑤 as 1∕(1 + t∕5000),
and 𝛿l as 4∕(1 + t∕5000).We run simulation for 200,000 iterations. The result in
Fig. 4-18b shows that the average final distance converges close to the distance
of 2 after the learning.

In the second simulation, we fix the invader’s strategy to a random-walk strat-
egy, which means that the invader can move up, down, left, or right with equal
probability. Similar to the first simulation, the learning performance of the
algorithms is tested on the basis of the result of a testing phase after every 100
iterations. In the testing phase, we play the game 1000 times and average the
final distance between the invader and the territory at the terminal time for
each run over 1000 runs.

We test the learning performance of both algorithms for the defender in the
game and compare them. The results are shown in Fig. 4-19a and b. Using
the WoLF-PHC algorithm, the defender can intercept the invader further
away from the territory (distance of 6.6) than using the minimax-Q algorithm
(distance of 5.9). Therefore, on the basis of the rationality criterion in
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Fig. 4-18. Results in the first simulation for the 6 × 6 grid game. (a) Result of the minimax-Q

learned strategy of the defender against the minimax-Q-learned strategy of the invader.

(b) Result of the WoLF-PHC learned strategy of the defender against the WoLF-PHC-learned

strategy of the invader. Reproduced from [5], © X. Lu.

Table 4.7, the WoLF-PHC-learned defender can achieve better performance
than the minimax-Q-learned defender when playing against a random-walk
invader.

4.13 Extension of LR−I Lagging Anchor Algorithm to Stochastic

Games

The proposedLR−I lagging anchor algorithm is designed on the basis ofmatrix
games. In this section, we extend the algorithm to the more general stochas-
tic games. Inspired by the WoLF-PHC algorithm in Reference 2, we design a
practical decentralized learning algorithm for stochastic games based on the
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Fig. 4-19. Results in the second simulation for the 6 × 6 grid game. (a) Result of the

minimax-Q-learned strategy of the defender against the invader using a fixed strategy. (b) Result

of the WoLF-PHC-learned strategy of the defender against the invader using a fixed strategy.

Reproduced from [5], © X. Lu.

LR−I lagging anchor approach in (3.59). The practical algorithm is shown in
Algorithm 4.6.

We now apply Algorithm 4.6 to a stochastic game to test its performance.
The stochastic game we simulate is a general-sum grid game introduced by
Hu and Wellman [8] and that we have already reviewed in section 4.4. Recall
that. The game runs under a 3 × 3 grid field as shown in Fig. 4-20a. We have
two players whose initial positions are located at the bottom left corner for
player 1 and the bottom right corner for player 2. Both players try to reach
the goal denoted as “G” in Fig. 4-20a. Each player has four possible moves
which are moving up, down, left, or right unless the player is on the sides of
the grid. In Hu andWellman’s game, the movement that will take the player to
a wall is ignored. Since we use exactly the same game as Hu and Wellman,
the possible actions of hitting a wall have been removed from the players’
action sets. For example, if the player is at the bottom-left corner, its avail-
able moves are moving up or right. If both players move to the same cell at
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(a) (b) (c)

Fig. 4-20. Hu and Wellman’s grid game. (a) Grid game. (b) Nash equilibrium path 1. (c) Nash

equilibrium path 2. Reproduced from [24] © M. Awheda and Schwartz, H. M.

Algorithm 4.6 A practical LR−I lagging anchor algorithm for player i

1: Initialize Qi(s, ai) ← 0 and 𝜋i(s, ai) ←
1|Ai| .Choose the learning rate 𝛼, 𝜂

and the discount factor 𝛾.
2: for Each iteration do
3: Select action ac at current state s based onmixed exploration-exploitation

strategy
4: Take action ac and observe the reward r and the subsequent state s′

5: Update Qi(s, ac)

Qi(s, ac) = Qi(s, ac) + 𝛼
[
ri + 𝛾max

a′
Qi(s′, a′) −Qi(s, ac)

]
6: Update the player’s policy 𝜋i(s, ⋅)

𝜋i(s, ac) = 𝜋i(s, ac) + 𝜂Qi(s, ac)
[
1 − 𝜋i(s, ac)

]
+ 𝜂

[
𝜋̄i(s, ac) − 𝜋i(s, ac)

]
𝜋̄i(s, ac) = 𝜋̄i(s, ac) + 𝜂

[
𝜋i(s, ac) − 𝜋̄i(s, ac)

]
𝜋i(s, aj) = 𝜋i(s, aj) − 𝜂Qi(s, ac)𝜋i(s, aj) + 𝜂

[
𝜋̄i(s, aj) − 𝜋i(s, aj)

]
𝜋̄i(s, aj) = 𝜋̄i(s, aj) + 𝜂

[
𝜋i(s, aj) − 𝜋̄i(s, aj)

]
(for all aj ≠ ac)

7: end for(
Qi(s, ai) is the action-value function, 𝜋i(s, ai) is the probability of player i
taking action ai at state s and ac is the current action taken by player i at
state s

)
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the same time, they will bounce back to their original positions. The two thick
lines in Fig. 4-20a represent two barriers such that the player can pass through
the barrier with a probability of 0.5. For example, if player 1 tries to move up
from the bottom-left corner, it will stay still or move to the upper cell with a
probability of 0.5. The game ends when either of the players reaches the goal.
To reach the goal in the minimum number of steps, the player needs to avoid
the barrier and first move to the bottom center cell. Since both players cannot
move to the bottom center cell simultaneously, the players need to cooperate
such that one of the players has to take the risk and move up. The reward
function for player i (i = 1, 2) in this game is defined as

ri =

⎧⎪⎪⎨⎪⎪⎩
100 player i reaches the goal

−1 both players move to the same cell (except the goal)

0 otherwise

(4.78)

According to Reference 8, this grid game has two Nash equilibrium paths as
shown in Fig. 4-20b and c. Starting from the initial state, the Nash equilibrium
strategies of the players are player 1 moving up and player 2 moving left, or
player 1 moving right and player 2 moving up.

We set the step size as 𝜂 = 0.001, the learning rate as 𝛼 = 0.001, and the dis-
count factor as 𝛾 = 0.9. The mixed exploration-exploitation strategy is chosen
such that the player chooses a random action with probability 0.05 and the
greedy action with probability 0.95.We run the simulation for 10,000 episodes.
An episode is when the game starts with the players’ initial positions and ends
when either of the players reaches the goal. Figure 4-21 shows the result of two
players’ learning trajectories. We define p1 as player 1’s probability of moving
up and q1 as player 2’s probability ofmoving up from their initial positions. The
result in Fig. 4-21 shows that the two players’ strategies at the initial state con-
verge to one of the two Nash equilibrium strategies (player 1 moving right and
player 2 moving up). Therefore, the proposed practical LR−I lagging anchor
algorithm may be applicable to general-sum stochastic games.

4.14 The Exponential Moving-Average Q-Learning

(EMA Q-Learning) Algorithm

The exponential moving-average (EMA) approach is a model-free strategy
estimation approach. It is a family of statistical approaches used to analyze
time series data in finance and technical analysis. Typically, EMA gives the
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Fig. 4-21. Learning trajectories of players’ strategies at the initial state in the grid game.

Reproduced from [5] © X. Lu.

recent observations more weight than the older ones [25]. The EMA esti-
mation approach is used in Reference 26 by the hyper Q-learning algorithm
to estimate the opponent’s strategy. It is also used in Reference 25 by the
IGA agent to estimate its opponent’s strategy. The EMA estimator used
to estimate the strategy of the agent’s opponent(s) can be described by the
following equation [25, 26]:

𝜋
−j
t+1(s) = (1 − 𝜂)𝜋−j

t (s) + 𝜂u⃗(a−j) (4.79)

where 𝜋−j(s) is the opponent’s strategy, 𝜂 is a small constant step size
(0 < 𝜂 ≪ 1), and u⃗(a−j) is a unit vector representation of the action a−j chosen
by the opponent (−j) at the state s. The unit vector u⃗(a−j) contains the same
number of elements as 𝜋−j. The elements in the unit vector u⃗(a−j) are all
equal to zero except for the element corresponding to the action a−j which is
equal to 1.

In this work, we are proposing a simple algorithm that uses the EMA
approach. This algorithm is called the EMA Q-learning algorithm. The pro-
posed algorithm uses the EMA mechanism as a basis to update the strategy
of the agent itself. Furthermore, it uses two different variable learning rates
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𝜂𝑤 and 𝜂l when updating the agent’s strategy instead of only one constant
learning rate 𝜂 used in References 25, 26. The values of these variable learning
rates are inversely proportional to the number of iterations. The recursive
Q-learning algorithm for a learning agent j is given by the following equation:

Qj
t+1(s, a) = (1 − 𝜃)Qj

t(s, a) + 𝜃(rj + 𝜁 max
a′

Qj
t(s

′, a′)) (4.80)

Algorithm 4.7 The exponential moving-average (EMA) Q-learning algorithm
for agent j

Initialize:
learning rates 𝜃 ∈ (0,1], 𝜂l and 𝜂𝑤 ∈ (0,1]
constant gain k
exploration rate 𝜖
discount factor 𝜁
Qj(s, a) ← 0 and 𝜋j(s) ← 1|Aj|
Repeat
(a) From the state s select an action a according to the strategy 𝜋jt(s, a) with
some exploration.
(b) Observe the immediate reward rj and the new state s′.
(c) Update Qj

t+1(s, a) using Eq. (4.80).
(d) Update the strategy 𝜋

j
t+1(s, a) by using Eq. (4.81).

The EMA Q-learning algorithm updates the strategy of the agent j by
Eq. (4.81), whereas Algorithm 4.7 lists the procedure of the EMA Q-learning
algorithm for a learning agent j.

𝜋
j
t+1(s) = (1 − k𝜂)𝜋jt(s) + k𝜂u⃗(a) (4.81)

where

k is a constant gain.

𝜂 =

{
𝜂𝑤 if a = argmaxa′Q

j
t(s, a′)

𝜂l otherwise

u⃗(a) =

{
u⃗(aj) if a = argmaxa′Q

j
t(s, a′)

u⃗(a′j) otherwise
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u⃗(aj) is a unit vector representation of the action aj with zero elements except
for the element corresponding to the action aj which is equal to 1. This is
to make the EMA Q-learning learn fast when the chosen action of agent j
is equal to the greedy action obtained from the agent’s Q-table. On the other
hand, u⃗(a′j) = 1|Aj|−1 [1⃗ − u⃗(aj)]. This is to make the EMAQ-learning learn cau-

tiously and increase the opportunity of exploring the other agent’s actions
when the chosen action of agent j and the greedy action obtained from the
agent’s Q-table are different.

4.15 Simulation and Results Comparing EMA Q-Learning to Other

Methods

We have evaluated the EMA Q-learning, WoLF-PHC [2], GIGA-WoLF [27],
weighted policy learning (WPL) [28], and policy gradient ascent with approx-
imate policy prediction (PGA-APP) [29] algorithms on a variety of matrix
and stochastic games. We only show the EMA Q-learning, the PGA-APP,
and the WPL algorithms. The results of applying the WPL, PGA-APP, and
EMAQ-learning algorithms to different matrix and stochastic games are pre-
sented in this section. A comparison among the three algorithms in terms of
the convergence toNash equilibrium is provided.We use the same learning and
exploration rates for all algorithms when they are applied to the same game.
In some cases, these rates are chosen to be close to those used in Reference 29.
In other cases, the values of these rates are chosen on a trial-and-error basis to
achieve the best performance of all algorithms.

4.15.1 Matrix Games

We revisit matrix games to illustrate the improved performance of the EMA
Q-learning algorithm. The EMAQ-learning, PGA-APP, andWPL algorithms
are applied to the matrix games. They are also applied to the three-player
matching pennies game. Figure 4-22 shows the probability distributions of the
second actions for both players in the dilemma game. The EMA Q-learning,
PGA-APP, and WPL algorithms are shown. In this game, the parameters of
the EMA Q-learning algorithm are set as follows: 𝜂𝑤 = 1

10+i∕5
, 𝜂l = 0.01𝜂𝑤,

k = 1, 𝜁 = 0, and 𝜃 = 0.05 with an exploration rate 𝜀 = 0.05. The parameter
𝛾 is set as 𝛾 = 0.5 in the PGA-APP algorithm and the learning rate 𝜂 is
decayed with a slower rate in the WPL algorithm and is set as 𝜂 = 1

10+i∕350
.

Figure 4-23 shows the probability distributions of the first actions for the
three players in the three-player matching pennies game while learning with
the EMA Q-learning, PGA-APP, and WPL algorithms. In this game, the
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Fig. 4-22 Probability distributions of the second actions for both players in the dilemma game. (a) The EMA Q-learning, (b) PGA-APP, and

(c) WPL algorithms are shown. Reproduced from [24] © M. Awheda and Schwartz, H. M.
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parameters of the EMA Q-learning algorithm are set as follows: 𝜂𝑤 = 5
5000+4i

,
𝜂l = 2𝜂𝑤, k = 1, 𝜁 = 0, and 𝜃 = 0.8with an exploration rate 𝜀 = 0.05. The value
of 𝛾 is set to 𝛾 = 3 in the PGA-APP algorithm and the learning rate 𝜂 is decayed
slowly in theWPL algorithm and is set as 𝜂 as 𝜂 = 5

5000+i∕500
. Figure 4-24 shows

the probability distributions of player 1’s actions in the Shapley’s game while
learning with the EMA Q-learning, PGA-APP, and WPL algorithms. In this
game, the parameters of the EMA Q-learning algorithm are set as follows:
𝜂𝑤 = 1

50+i
, 𝜂l = 2𝜂𝑤, k = 1, 𝜁 = 0, and 𝜃 = 0.8with an exploration rate 𝜀 = 0.05.

The learning rate 𝜂 and the parameter 𝛾 in the PGA-APP algorithm are set as
follows: 𝜂 = 1

50+i∕50
and 𝛾 = 3. On the other hand, in the WPL algorithm, the

learning rate 𝜂 is decayed slowly and is set as 𝜂 = 1
50+i∕200

. Figure 4-25 shows the
probability distributions of the first actions for both players in the biased game
while learning with the EMAQ-learning, PGA-APP, andWPL algorithms. In
this game, the parameters of the EMAQ-learning algorithm are set as follows:
𝜂𝑤 = 1

10+i∕5
, 𝜂l = 0.01𝜂𝑤, k = 1, 𝜁 = 0.95, and 𝜃 = 0.8 with an exploration rate

𝜀 = 0.05. In the PGA-APP algorithm, the values of 𝜁 and 𝛾 are set as follows:
𝜁 = 0 and 𝛾 = 3. In the WPL algorithm, the parameter 𝜁 is set as 𝜁 = 0 and
the learning rate 𝜂 is decayed with a slower rate and is set as 𝜂 = 1

10+i∕350
. As

shown in Figs. 4-22–4-24, the players’ strategies successfully converge to Nash
equilibria in all games when learning with the EMA Q-learning, PGA-APP,
and WPL algorithms. It is important to mention here that the WPL algo-
rithm successfully converges to Nash equilibrium in the three-player matching
pennies game although it was presented to diverge in this game in Reference
29. On the other hand, Fig. 4-26 shows that both PGA-APP and WPL algo-
rithms fail to converge to a Nash equilibrium in the biased game; only the
EMAQ-learning algorithm succeeds to converge to a Nash equilibrium in the
biased game.

4.15.2 Stochastic Games

It is important to mention here that we are only concerned about the first
movement of both players from the initial state. Therefore, the figures that will
be shown in this section will represent the probabilities of players’ actions at
the initial state.

4.15.2.1 Grid Game 1

The EMAQ-learning, PGA-APP, and WPL algorithms are used to learn grid
game 1 depicted again in Fig. 4-27a. Grid game 1 has 10 different Nash equi-
libria [8]. One of these Nash equilibria is shown in Fig. 4-28a. Figure 4-28a
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Fig. 4-26 Grid game 1. (a) Probability of action North of player 1 when learning with the EMA Q-learning algorithm with different values of the

constant gain k. Plots (b) and (c) illustrate the probability of action North of player 1 and player 2, respectively, when learning with the EMA

Q-learning, PGA-APP, and WPL algorithms. Reproduced from [24] © M. Awheda and Schwartz, H. M.
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Fig. 4-28. (a) Nash equilibrium of grid game 1. (b) Nash equilibrium of grid game 2 [8] with

permission from MIT press. Reproduced from [24] © M. Awheda and Schwartz, H. M.

shows that the action North is the optimal action for both players when they
are at the initial state. The learning and exploration rates used by all algorithms
are the same. The parameters of the EMA Q-learning algorithm are set as
follows: 𝜂𝑤 = 1

10+i
, 𝜂l = 0.001𝜂𝑤, k = 5, 𝜁 = 0, and 𝜃 = 0.8 with an exploration

rate 𝜀 = 1
1+0.001i

, where i is the current number of episodes. The values of the
parameters of the PGA-APP algorithm are the same as those of the EMA
Q-learning algorithm except that 𝛾 = 3 and 𝜂 has a very slow decaying rate,
𝜂 = 1

10+i∕5000
. The WPL algorithm also has the same parameters as the EMA

Q-learning algorithm except that the learning rate 𝜂 has a very slow decaying
rate of 𝜂 = 1

10+i∕5000
.

Figure 4-26a shows the probability of selecting action North by player 1 at the
initial state when learning with the EMA Q-learning algorithm with different
values of the constant gain k. Player 2 has similar probability distributions
when learning with the EMA Q-learning algorithm with different values of
the constant gain k. Figure 4-26a shows that player 1’s speed of convergence
to the optimal action (North) increases as the value of the constant gain k
increases. Figure 4-26a shows that the probability of selecting the optimal
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actionNorth by player 1 requires almost 80 episodes to converge to 1when k=5
and 320 episodes when k=3. However, when k = 1, many more episodes are
still required for the probability of selecting the action North to converge to 1.
Figure 4-26b and c shows the probabilities of taking action North at the ini-
tial state by both players when learning with the EMAQ-learning, PGA-APP,
and WPL algorithms. This figure shows that the probabilities of taking action
North by both players converge to the Nash equilibria (converge to 1) when
learning with the EMA Q-learning algorithm. However, the PGA-APP and
WPL algorithms fail to make the players’ strategies converge to the Nash equi-
libria. Figure 4-26 shows that the EMAQ-learning algorithm outperforms the
PGA-APP and WPL algorithms in terms of the convergence to Nash equilib-
ria. It also shows that the EMA Q-learning algorithm can converge to Nash
equilibria with a small number of episodes by adjusting the value of the con-
stant gain k. This will give the EMAQ-learning algorithm an empirical advan-
tage over the PGA-APP and WPL algorithms.

4.15.2.2 Grid Game 2

The EMAQ-learning, PGA-APP, and WPL algorithms are also used to learn
grid game 2 as depicted in Fig. 4-27b. Grid game 2 has twoNash equilibria [8].
Figure 4-28b shows one of these Nash equilibria. It is apparent from this par-
ticular Nash equilibrium that the action North is the optimal action for player
1 at the initial state, whereas the action West is the optimal action for player
2. Thus, for the algorithms to converge to this particular Nash equilibrium,
the probability of selecting the action North by player 1 should converge to
1. The probability of selecting the action West by player 2, on the other hand,
should also converge to 1. The learning and exploration rates used by all algo-
rithms are the same. The parameters of the EMA Q-learning algorithm are
set as follows: 𝜂𝑤 = 1

10+i
, 𝜂l = 0.001𝜂𝑤, k = 10, 𝜁 = 0.1, and 𝜃 = 1

1+0.001i
with

an exploration rate 𝜀 = 1
1+0.001i

, where i is the current number of episodes. The
values of the parameters of the PGA-APP algorithm are the same as those of
the EMAQ-learning algorithm except that 𝛾 = 3, 𝜁 = 0, and 𝜂 has a very slow
decaying rate of 𝜂 = 1

10+i∕5000
. The WPL algorithm also has the same parame-

ters as the EMAQ-learning algorithm except that 𝜁 = 0 and 𝜂 has a very slow
decaying rate of 𝜂 = 1

10+i∕5000
.

Figure 4-29a shows the probability of selecting action North by player 1
when learning with the EMA Q-learning, PGA-APP, and WPL algorithms.
Figure 4-29a illustrates that the probability of selecting the action North by
player 1 successfully converges to 1 (Nash equilibrium) when player 1 learns
with the EMA Q-learning algorithm. However, the PGA-APP and WPL
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Fig. 4-29 Grid game 2. (a) Probability of selecting actionNorth by player 1when learningwith the EMAQ-learning, PGA-APP, andWPL algorithms.

(b) Probability of selecting action West by player 2 when learning with the EMA Q-learning, PGA-APP, and WPL algorithms. Reproduced from

[24] © M. Awheda and Schwartz, H. M.
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algorithms fail to make player 1 choose action North with a probability of
1. Figure 4-29b shows the probability of selecting action West by player 2
when learning with the EMA Q-learning, PGA-APP, and WPL algorithms.
As can be seen from Fig. 4-29b, the probability of selecting action West by
player 2 successfully converges to 1 (Nash equilibrium) when player 2 learns
with the EMA Q-learning algorithm. The PGA-APP and WPL algorithms,
on the other hand, fail to make player 2 choose action West with a probability
of 1. Figure 4-29 shows that the EMA Q-learning algorithm outperforms the
PGA-APP and WPL algorithms in terms of the convergence to Nash equilib-
ria. This will give the EMAQ-learning algorithm an empirical advantage over
the PGA-APP and WPL algorithms.
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